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The paper develops a two-stage robust procedure for structural equation modeling (SEM) and an R
package rsem to facilitate the use of the procedure by applied researchers. In the first stage, M-estimates
of the saturated mean vector and covariance matrix of all variables are obtained. Those corresponding
to the substantive variables are then fitted to the structural model in the second stage. A sandwich-type
covariance matrix is used to obtain consistent standard errors (SE) of the structural parameter estimates.
Rescaled, adjusted as well as corrected and F -statistics are proposed for overall model evaluation. Using R
and EQS, the R package rsem combines the two stages and generates all the test statistics and consistent
SEs. Following the robust analysis, multiple model fit indices and standardized solutions are provided
in the corresponding output of EQS. An example with open/closed book examination data illustrates the
proper use of the package. The method is further applied to the analysis of a data set from the National
Longitudinal Survey of Youth 1997 cohort, and results show that the developed procedure not only gives
a better endorsement of the substantive models but also yields estimates with uniformly smaller standard
errors than the normal-distribution-based maximum likelihood.

Key words: auxiliary variables, estimating equation, missing at random, R package rsem, sandwich-type
covariance matrix.

1. Introduction

Being capable of modeling latent variables and measurement errors simultaneously, struc-
tural equation modeling (SEM) has become one of the most popular statistical methods in social
and behavioral research, where missing data are common, especially when data are collected
longitudinally. Many procedures have been developed for modeling missing data in SEM, most
of which are normal-distribution-based maximum likelihood (NML; see, e.g., Enders & Banda-
los, 2001; Raykov, 2005). There are also a few developments accounting for the effect of non-
normality on test statistics and standard errors (SEs) associated with NML (Arminger & Sobel,
1990; Yuan & Bentler, 2000). However, NML1 estimates (NMLE) can be very inefficient or even
biased when data have heavy tails or are contaminated. Yuan & Bentler (2001) and Yuan, Mar-
shall and Bentler (2002) provided outlines of modeling missing data in SEM and factor analysis
using maximum likelihood (ML) based on the multivariate t-distribution. But their developments
are limited to a rescaled statistic and they did not provide the details of implementing the proce-
dures. Lee & Xia (2006) developed a missing data procedure for nonlinear SEM in which latent
variables as well as measurement and prediction errors are symmetrically distributed. Model es-
timation and inference are through Monte Carlo and the Bayesian information criterion (BIC).
Because both model structure and estimation method affect the value of BIC, Lee and Xia (2006,
pp. 581–582) noted that the method should be used with caution. In this paper, we develop a
two-stage procedure for robust SEM with missing data, where robust M-estimators of the sat-
urated mean vector and covariance matrix are obtained in the first stage and are then fitted by

1Without missing values, NML is uniquely defined. With missing values, there are direct NML and 2-stage NML
(see Yuan & Bentler, 2000). Unless explicitly mentioned, our discussion equally applies to both/either of them.

The research was supported by Grants DA00017 and DA01070 from the National Institute on Drug Abuse.
Requests for reprints should be sent to Ke-Hai Yuan, Department of Psychology, University of Notre Dame,

Notre Dame, IN 46556, USA. E-mail: kyuan@nd.edu

© 2012 The Psychometric Society
803

mailto:kyuan@nd.edu


804 PSYCHOMETRIKA

the structural model in the second stage. Model evaluation is done by using well-established test
statistics or fit indices for complete data. Furthermore, we develop an R package rsem for the
two-stage robust procedure so that applied researchers can use it when analyzing substantive
data. We will also show how this procedure works by analyzing a data set from the National
Longitudinal Survey of Youth 1997 (NLSY97) cohort with latent growth curve models.

Missing data can occur for many reasons. The process by which data become incomplete was
called a missing data mechanism by Rubin (1976). Missing completely at random (MCAR) is a
process in which missingness of data is independent of both the observed and the missing values.
Missing at random (MAR) is a process in which missingness is independent of the missing values
given the observed data. When missingness depends on the missing values themselves given the
observed data, the process is missing not at random (MNAR). When ignoring the MAR or MCAR
mechanism, ML estimates (MLEs) are still consistent. When missing values are MNAR, one has
to correctly model the missing data process in order to get consistent parameter estimates in
general. However, the MAR or MNAR mechanism depends on whether variables accounting for
missingness are observed and included in the estimation. Auxiliary variables are those that are
not directly involved in the structural model but have the potential to account for missingness in
the substantive variables (Enders, 2010, pp. 127–163). Our procedure aims for SEM with missing
data that are MAR after including potential auxiliary variables. In particular, auxiliary variables
can be easily included in the first-stage robust M-estimation. Parallel to the procedures in Yuan &
Lu (2008) and Savalei & Bentler (2009), only estimates of means and covariances corresponding
to the substantive variables are selected and fitted by the structural model in the second-stage
analysis.

With complete data, we can use existing procedures to check the distributional properties
of the sample before choosing a parametric model (e.g., D’Agostino, Belanger & D’Agostino,
1990). With missing data, especially when missing values are MAR, the observed data can be
skewed and possess excess kurtosis even when the underlying population is normally distributed.
Similarly, when the population is non-normally distributed, the observed data may easily pass a
test for normality due to MAR missing data mechanism (see, e.g., Yuan, Lambert & Fouladi,
2004b). Thus, we have to rely on the robust properties of the selected method in data analysis
with missing values. In the context of complete data it has been shown that NMLEs suffer from
severe biases when outliers or data contamination exists (see, e.g., Zu & Yuan, 2010). We do not
expect the biases to disappear when a sample also contains missing values. In addition to biases,
efficiency is also a key consideration in choosing a proper statistical method. The efficiency
of NMLEs goes to zero as the kurtosis of the population increases. Compared to NML, a robust
procedure typically yields much less biased estimates when outliers or data contamination exists.
Robust estimates are also a lot more efficient with practical data typically having heavy tails
(Zhong & Yuan, 2011).

The difference between NML and a robust procedure is in how each observation is treated
in the estimation process. In NML, all observations are treated equally. In a robust procedure,
each case gets a weight according to its distance from the center of the majority of the data.
Cases far away from the center get smaller weights. Many weight functions can be used for such
a purpose. In our implementation, we use the Huber-type weight function because it tends to
yield more efficient parameter estimates than other weight functions for SEM with real complete
data (Yuan, Bentler & Chan, 2004a). The tuning parameter in the Huber-type weight function is
also explicitly related to the percentage of contaminated data or outliers that one would like to
control. With robust estimates of means and variances–covariances, we also need an estimate of
their asymptotic covariance matrix. This covariance matrix is a key element to obtain consistent
standard errors (SEs) and reliable test statistics for overall model evaluation. The size of this
matrix can be very large, and it is already a challenge for its estimate to be positive definite
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even without any missing data. Another consideration behind choosing the Huber-type weight
function is that it does not assign zero weights to cases. When many cases get zero weights, it
is very likely that the resulting estimate of the asymptotic covariance matrix is close to singular,
then SEs and test statistics following from using such a covariance matrix become unreliable.

Robust estimates of means and covariances with missing values are studied by Little (1988)
and Liu (1997) using a multivariate t-distribution. Cheng & Victoria-Feser (2002) provide an al-
gorithm for obtaining minimum covariance determinant (MCD) estimates. Yuan (2011) extends
M-estimators of means and covariances to samples containing missing values using estimating
equations, and showed that these equations can be solved by an expectation robust (ER) algo-
rithm. These robust estimates are parallel to the sample means and covariances, and provide
the building blocks for robust SEM. However, it is technically a lot more involved to utilize
these building blocks for robust SEM than the development of NML using the sample means
and covariances. Existing development in this direction is Yuan & Bentler (2001) and Yuan
et al. (2002), where a rescaled statistic is proposed for overall model evaluation, using robust
estimates of means and covariances based on a multivariate t-distribution. However, the exact
or asymptotic distribution of the rescaled statistic is unknown in general and other alternatives
are available (Bentler & Yuan, 1999). As mentioned earlier, Huber-type weights tend to yield
more efficient estimates with real complete data. To our knowledge, with missing data, there
does not exist any development for using the M-estimates of means and covariance matrix based
on Huber-type weight functions. The methodological contribution of this paper is to develop a
robust SEM procedure with missing data using the Huber-type M-estimates of means and covari-
ances. In particular, in addition to the rescaled statistic, we propose using an adjusted statistic,
a corrected residual-based statistic, and a related F -statistic for overall model evaluation. These
statistics have been shown to have either theoretical or practical advantages over the rescaled
statistic in other contexts of SEM (Yuan & Bentler, 2010; Bentler & Yuan, 1999), and some of
them have been implemented in software (e.g., EQS, Mplus) with the NML methodology. The
novelty of the development is to use them in the context of robust SEM with missing data. Be-
cause the development is very technical, applied researchers will not be able to use the method
if we just present the results with examples. Another contribution of the paper is to develop an
easy-to-use R package rsem that implements the two-stage robust procedure. In particular, for
any missing data with or without auxiliary variables, the package rsem can generate the standard
EQS output (Bentler, 2008) that contains sound statistics for overall model evaluation, consistent
SEs for structural parameter estimates, multiple fit-indices and standardized solutions.

Section 2 describes an expectation robust algorithm for obtaining M-estimators of means
and covariances as well as a formula for evaluating their asymptotic covariance matrix. Section 3
contains the development of the second-stage analysis using the normal-distribution-based dis-
crepancy function and the associated adjusted, rescaled, and residual-based statistics. Section 4
introduces the R package rsem and illustrates its use with EQS 6.1 by the test score data of
Mardia, Kent and Bibby (1979). Section 5 presents the analysis of the NLSY97 data by compar-
ing the results from the robust method against those from 2-stage NML. Section 6 concludes the
paper with discussions.

2. M-estimates of the Saturated Mean Vector and Covariance Matrix

This section presents an ER algorithm as given in Yuan (2011). We also provide an asymp-
totic formula for estimating the covariance matrix of the robust M-estimates. In particular, we
assume auxiliary variables are available.

Let y represent a population of p random variables with E(y) = μ and Cov(y) = �. We
are interested in modeling μ and � by a structural model. A sample yi , i = 1,2, . . . , n, from y
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with missing values is available. In addition to the substantive variables in y, there also exists a
vector u of q − p auxiliary variables with the associated sample realization ui , i = 1,2, . . . , n.
Let x = (y′,u′)′ with E(x) = ν and Cov(x) = V. Due to missing values, the vector xi = (y′

i ,u′
i )

′
only contains qi marginal observations of x. Also, we do not know the distribution of x, and
the observations in xi may contain outliers. In such a case, robust estimates of ν and V are
preferred to NMLEs. Let νi and Vi be the mean vector and covariance matrix corresponding to
the observed values in xi . Then the Mahalanobis distance between xi and νi is given by

d2
i = d2(xi ,νi ,Vi ) = (xi − νi )

′V−1
i (xi − νi ).

Let wi1(di), wi2(di) and wi3(di) nonincreasing scalar functions of di . The estimating equations
defining robust M-estimators are given by

n∑

i=1

wi1(di)
∂ν ′

i

∂ν
V−1

i (xi − νi ) = 0 (1)

and
n∑

i=1

∂ vec′(Vi )

∂v
Wi vec

[
wi2(di)(xi − νi )(xi − νi )

′ − wi3(di)Vi

] = 0, (2)

where Wi = 0.5(V−1
i ⊗V−1

i ) with ⊗ being the notation for the Kronecker product (Schott, 2005,
p. 283), vec(·) is the operator that transforms a matrix into a vector by stacking the columns of the
matrix, and v = vech(V) is the vector of stacking the columns in the lower-triangular part of V.
Notice that the subscript i in wi1, wi2, and wi3 is to adjust for varying number of observations
in xi . When wi1(di) = wi2(di) = wi3(di) = 1, Equations (1) and (2) define NMLEs of ν and V
with missing data. When wi1(di) = wi2(di) = (m+qi)/(m+d2

i ) and wi3(di) = 1, Equations (1)
and (2) define the MLEs of ν and V based on the multivariate t-distribution with m degrees of
freedom. When the three weight functions are chosen according to Lopuhaä (1989) or Rocke
(1996), Equations (1) and (2) define S-estimators of ν and V for samples with missing data.
Let 0 < ϕ < 1 and ρi be the (1 − ϕ)-quantile corresponding to χqi

, the chi-distribution with qi

degrees of freedom. Huber-type weight functions with missing data are given by

wi1(di) =
{

1 if di ≤ ρi,

ρi/di if di > ρi,
(3)

wi2(di) = [wi1(di)]2/κi and wi3(di) = 1, where κi is a constant defined by E[χ2
qi

w2
i1(χ

2
qi

)/κi] =
qi that aims to yield a consistent estimate of V when x ∼ N(ν,V). In using rsem, one only needs
to specify ϕ, and the values of ρi and κi are functions of ϕ that will be automatically obtained
by the package when evaluating each weight.

Equations (1) and (2) can be easily solved by an ER algorithm that consists of an (expecta-
tion) E-step and an (robust) R-step. Let xic = (x′

i ,x′
im)′ denote the complete data, where xim is

the vector containing the q −qi missing values. Of course, with real data the positions of missing
values are not always at the end. We can perform permutations on each missing pattern so that all
the missing variables are at the end before the start of each E-step, and put the expected values
(including conditional variances–covariances) back to their original positions at the end of the
E-step. Let ν(j) and V(j) be the current values of ν and V, and ν

(j)
i and V(j)

i correspond to those
of the observed xi within a given missing data pattern. When qi < q , we have

ν(j) =
(

ν
(j)
i

ν
(j)
im

)
and V(j) =

(
V(j)

i V(j)
iom

V(j)
imo V(j)

imm

)
,

where ν
(j)
im corresponds to the means of xim, and V(j)

imm and V(j)
imo correspond to the covariances of
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xim with itself and xi , respectively. Let d
(j)
i = d(xi ,ν

(j)
i ,V(j)

i ). The E-step of the ER algorithm

obtains the weights w
(j)

i1 = wi1(d
(j)
i ), w

(j)

i2 = wi2(d
(j)
i ), w

(j)

i3 = wi3(d
(j)
i ), the conditional means

x̂(j)
ic = Ej(xic|xi ) =

(
xi

x̂(j)
im

)
, (4)

and the conditional covariance matrix

C(j)
i = Covj (xic|xi ) =

(
0 0

0 C(j)
imm

)
, (5)

where

x̂(j)
im = ν

(j)
im + V(j)

imo

(
V(j)

i

)−1(xi − ν
(j)
i

)
and C(j)

imm = V(j)
imm − V(j)

imo

(
V(j)

i

)−1V(j)
iom.

The robust step is given by

ν(j+1) =
∑n

i=1 w
(j)

i1 x̂(j)
ic∑n

i=1 w
(j)

i1

, (6)

V(j+1) =
∑n

i=1[w(j)

i2 (x̂(j)
ic − ν(j+1))(x̂(j)

ic − ν(j+1))′ + w
(j)

i3 C(j)
i ]

∑n
i=1 w

(j)

i3

. (7)

The steps in (4) to (7) are repeated until convergence yields a solution to (1) and (2). For the
Huber-type weight function in (3), the algorithm is implemented in the R package rsem to be
introduced in Section 4.

Let ν̂ and V̂ be the solution to (1) and (2). They play the role of sample means and covariance
matrix in the second-stage analysis when estimating the structural parameters. We still need a
consistent estimator of the covariance matrix of ν̂ and v̂ = vech(V̂) to get consistent SEs of the
structural parameter estimates and reliable statistics for overall model evaluation. We obtain such
an estimator using a sandwich-type covariance matrix. Let α = (ν′,v′)′ and

g(α) = 1

n

n∑

i=1

gi (α),

where gi (α) = (g′
i1(α),g′

i2(α))′ with

gi1(α) = wi1(di)
∂ν ′

i

∂ν
V−1

i (xi − νi )

and

gi2(α) = ∂ vec′(Vi )

∂v
Wi vec

[
wi2(di)(xi − νi )(xi − νi )

′ − wi3(di)Vi

]
.

Under standard regularity conditions (Yuan & Jennrich, 1998), the estimators ν̂ and V̂ are con-
sistent and asymptotically normally distributed as described by

√
n(α̂ − α)

L→ N(0,ϒ), (8a)

where
L→ is the notation for convergence in distribution, α satisfies E[g(α)] = 0 and ϒ can be

consistently estimated by

ϒ̂ =
[

1

n

n∑

i=1

∂gi (α̂)

∂α̂′

]−1[
1

n

n∑

i=1

gi (α̂)g′
i (α̂)

][
1

n

n∑

i=1

∂g′
i (α̂)

∂α̂

]−1

. (8b)

The formulas for evaluating ∂gi (α)/α′ with Huber-type weights are given in Appendix A, and
coded in the R package rsem.
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3. Estimation and Inference with the Structural Model

The development in the previous section allows us to obtain ν̂, V̂, and ϒ̂ . Our interest is
in modeling the mean vector and covariance matrix of y. Let μ̂, �̂, and �̂ be the parts of ν̂, V̂,
and ϒ̂ corresponding to the variables in y, respectively; and β = (μ′,vech′(�))′. It follows from
(8a), (8b) that

√
n(β̂ − β)

L→ N(0,�), (9)

where � is consistently estimated by �̂. With (9), the theory of robust SEM for samples con-
taining missing values is the same as for SEM with complete data from an unknown population
distribution. In particular, we can fit μ̂ and �̂ by any structural model and use �̂ to obtain consis-
tent SEs and test statistics or fit indices for overall model evaluation. Suppose μ(θ) and �(θ) are
the structural models that satisfy μ = μ(θ) and � = �(θ) for certain θ . We choose estimating θ

by minimizing

FML(θ) = [
μ̂ − μ(θ)

]′
�−1(θ)

[
μ̂ − μ(θ)

] + tr
[
�̂�−1(θ)

] − log
∣∣�̂�−1(θ)

∣∣ − p (10)

because minimizing FML(θ) for parameter estimates is the default procedure in essentially all
SEM programs. Unless the sample size is huge, the resulting parameter estimates of minimizing

(10) are also more efficient than the generalized least squares (GLS) estimates in which �̂
−1

is used as a weight matrix (see, e.g., Yuan & Bentler, 1997), although the GLS estimators are
asymptotically more efficient. Let θ̂ be the parameter estimates of minimizing (10). In the fol-
lowing, we will provide the formulas for obtaining consistent SEs of θ̂ and test statistics for
overall model evaluation. The output of the rsem package is based on these formulas. Let Dp

be the duplication matrix such that Dp vech(�) = vec(�) (Schott, 2005, p. 313), β̇ = ∂β(θ)/∂θ ′
and

Wβ =
(

�−1 0

0 0.5D′
p(�−1 ⊗ �−1)Dp

)
.

It follows from (9) that

√
n(θ̂ − θ)

L→ N(0,	), (11)

where

	 = (
β̇

′
Wβ β̇

)−1(
β̇

′
Wβ�Wβ β̇

)(
β̇

′
Wβ β̇

)−1

is consistently estimated when replacing θ by θ̂ and � by �̂. Let 	̂ = (ω̂jk) be the resulting

estimate of 	. A consistent SE for the j th element of θ̂ is given by ω̂
1/2
jj /

√
n.

Let TML = nFML(θ̂) and k be the number of free parameters in θ . Although referring TML

to the nominal chi-square distribution will most likely yield more reliable inference than the
same procedure following NML, we do not recommend such a practice. Better theoretically
justified test statistics are a rescaled statistic and an adjusted statistic derived from TML, a cor-
rected residual-based asymptotically distribution free (ADF) statistic and a related F -statistic.
Let p∗ = p(p + 1)/2, then df = p∗ + p − k is the nominal degrees of freedom. Let

U = Wβ − Wβ β̇
(
β̇

′
Wβ β̇

)−1
β̇

′
Wβ

and m̂ = df/ tr(Û�̂). The rescaled statistic is given by

TRML = m̂TML,
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which asymptotically follows a distribution with mean equal to df (Satorra & Bentler, 1994).
Let

m̂1 = tr(Û�̂)/ tr
[
(Û�̂)2], m̂2 = [

tr(Û�̂)
]2

/ tr
[
(Û�̂)2].

The adjusted statistic

TAML = m̂1TML

asymptotically follows a distribution with mean and variance equal to that of χ2
m2

, where m2 =
[tr(U�)]2/ tr[(U�)2]. In practice, we refer TRML to χ2

df or TAML to χ2
m̂2

for model inference.
Although the exact distribution of neither TRML nor TAML is known even asymptotically, these
chi-square distributions have been shown to provide good approximations both empirically (Hu,
Bentler, & Kano, 1992) and asymptotically (Yuan & Bentler, 2010).

Let

Q = �−1 − �−1β̇
(
β̇

′
�−1β̇

)−1
β̇

′
�−1

and r = β̂ − β(θ̂). Then TRADF = nr′Q̂r is just the residual-based ADF statistic (Browne, 1984)
applied to the setting of robust procedures with missing data, and TRADF asymptotically follows
χ2

df . In particular, a corrected version of it,

TCRADF = TRADF/
(
1 + r′Q̂r

)

also asymptotically follows χ2
df and has been shown to work well when modeling the sample

covariance matrices with complete data (Bentler & Yuan, 1999; Yuan & Bentler, 1998). Referring
the F -statistic

TRF = (n − df )TRADF/
[
(n − 1)df

]

to an F -distribution with df and n − df degrees of freedom has also been shown to work well
with complete data at smaller sample sizes (Bentler & Yuan, 1999). Both TCRADF ∼ χ2

df and
TRF ∼ Fdf,(n−df ) are asymptotically exact.

The details of the derivation or justification for the result in (11), as well as for the four test
statistics, are essentially the same as for their counterparts in the context of SEM with complete
data. We will not provide the details here. We would like to note that these four statistics are cur-
rently available in EQS (Bentler, 2008) for complete data or NML-based analysis with missing
data. But they are not available in any software with a truly robust method. This motivated us to
develop the statistical package to be introduced next.

4. R package rsem for Robust Estimation and Structural Models

This section introduces the R package rsem that generates the estimates ν̂ and V̂ using
the ER algorithm in (4) to (7) with the Huber-type weights in (3). The sandwich-type covariance
matrix ϒ̂ in (8b) is also evaluated by the package. The vector μ̂ and matrices �̂ and �̂ are then fed
into EQS for the second-stage analysis automatically by the package. We choose EQS because
it outputs all the four test statistics described in the previous section, and it has the capability
of talking with R since version2 6.1 for Windows (build 97). The output also contains multiple
fit indices, standardized solutions, Lagrange multiplier, and Wald tests, which are widely used
by applied researchers and are well documented in Bentler (2008). The use of the package is

2The R package for robust SEM does not work with earlier versions of EQS that do not have the capability of talking
with R (Mair, Wu, & Bentler, 2010).
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illustrated through a real data set, and missing values are created so that they are MAR when an
auxiliary variable is included.

Table 1.2.1 of Mardia et al. (1979) contains test scores of n = 88 students on five subjects.
The five subjects are: Mechanics, Vectors, Algebra, Analysis, and Statistics. The first two subjects
were tested with closed-book exams and the last three were tested with open-book exams. Let
y be the vector3 of Mechanics, Vectors, Analysis, and Statistics. Yuan & Lu (2008) found that
the sample means and covariances of these four variables are well explained by the two-factor
model

y = 
f + e, (12)

where


 =
(

1.0 λ21 0 0
0 0 1.0 λ42

)′

is the factor loading matrix. Let τ = E(f) = (τ1, τ2)
′ be the vector of factor means, � = (φjk) =

Cov(f) be the factor covariance matrix, and 
 = diag(ψ11,ψ22,ψ33,ψ44) be a diagonal ma-
trix for the variances of unique factors or measurement errors. Then the mean and covariance
structures of y are

μ(θ) = 
τ and �(θ) = 
�
′ + 
. (13)

There are 11 parameters in the model with

θ = (τ1, τ2, λ21, λ42, φ11, φ21, φ22,ψ11,ψ22,ψ33,ψ44)
′.

The normal-distribution-based likelihood ratio statistic is TML = 3.259, with an associated p-
value = 0.353 when referred to χ2

3 .
We use the variable Algebra to create missing data schemes, and therefore x3 is an auxiliary

variable. When data for x2 = Vectors and x5 = Statistics are removed corresponding to the small-
est 31 scores of x3 = Algebra, and the variable Algebra is excluded from the analysis, the missing
data mechanism is MNAR. The missing data mechanism is MAR when the five variables are con-
sidered simultaneously. The created data set is at http://rpackages.psychstat.org/examples/rsem/
mardiamv25.dat, with −99 for missing values. The data set is also part of our R package and can
be accessed through the function data(mardiamv25).

To use the R package for the first time, it can be installed by issuing the following command

install.packages("rsem")

With the package installed, the robust SEM analysis can be conducted as illustrated below.
The R code in Lines 1 to 5 in Appendix B4 illustrates a typical routine for using our R pack-

age. Specifically, library(rsem) loads the R package. The code setwd("c:/rsemmv")
sets the working directory to the folder that contains the data file and the EQS model file (see
Appendix C). Lines 3 and 4 use the R function read.table to read the raw data in the
file mardiamv25.dat into R and save the data into an object called mardiamv25.5 The
argument header=T tells R that variable names are given in the data file and the argument
na.string="-99" indicates that -99 represents a missing datum in the data file. Line 5 uses
the function rsem from the package rsem to conduct the robust analysis. The first argument

3When including Algebra, the means and covariances of the five variables cannot be well fitted by a two-factor
model, as implied by a highly significant TML .

4The line numbers on the right margin of Appendix B are for the convenience of explaining the code, not part of R
input. The same is true for the EQS input files in Appendices C to F.

5Any name can be used here and mardiamv25 is used for convenience.

http://rpackages.psychstat.org/examples/rsem/mardiamv25.dat
http://rpackages.psychstat.org/examples/rsem/mardiamv25.dat
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mardiamv25 specifies the name of the data. The second argument c(1,2,4,5) is the vector
to select the variables 1, 2, 4, and 5 to be further fitted by the structural model in (12) or (13),
excluding the auxiliary variable x3 = Algebra. The third argument "mcov.eqs" is the name of
the EQS input file. The content of mcov.eqs for estimating the model in (12) or (13) is given
in Appendix C.6 Readers are referred to Bentler (2008) for detailed instruction on specifying
different models within EQS.

The default output from running the four lines of R code is given in Lines 9 to 49 of Ap-
pendix B. Lines 9 to 28 contain the information on estimating μ and � at the first stage. The
basic information about the data set, including the sample size and the number of variables, is
given in Lines 9 and 10. Line 13 lists the names of variables selected for the structural model.
Lines 15 to 18 provide information on missing data patterns. Line 15 tells the number of total
observed patterns in the original sample, 2 in this example. Each row from Lines 17 to 18 con-
tains q + 2 numbers regarding the missing data information for a particular pattern. The first
is the number of observed cases in the pattern, the second is the number of observed variables
(qi ) in the pattern. The next q numbers are either 1 or 0 with 1 indicating that the data for the
corresponding variables are observed and 0 indicating missing.

Line 21 gives the estimated mean vector μ̂, and Lines 25 to 28 give the estimated covariance
matrix �̂ corresponding to the selected variables listed in Line 13. The �̂, a 14 × 14 matrix, is
also calculated by the R package. Because its dimension is relatively large, the matrix7 is saved
in the file weight.txt and read into EQS directly rather than being part of the default output
of our R package. Actually, �̂ and μ̂ are also saved in the file data.txt and read by the EQS
file in Appendix C to perform the second-stage analysis.

The output of EQS for the second-stage analysis is in the file mcov.out in the working
directory. The four test statistics described in Section 3, TRML, TAML, TCRADF , and TRF , appear,
respectively, as

SATORRA-BENTLER SCALED CHI-SQUARE = 1.3763 ON 3 DEGREES
OF FREEDOM PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC
IS 0.71109

MEAN- AND VARIANCE-ADJUSTED CHI-SQUARE = 1.220 ON 3 D.F.
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS 0.74826

YUAN-BENTLER RESIDUAL-BASED TEST STATISTIC = 1.427
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS 0.69930

YUAN-BENTLER RESIDUAL-BASED F-STATISTIC = 0.472
DEGREES OF FREEDOM = 3, 85
PROBABILITY VALUE FOR THE F-STATISTIC IS 0.70228

These four statistics and p-values8 are also part of the default output of our R package, as dis-
played in Lines 32 to 35 of Appendix B.

6The input file is also available at http://rpackages.psychstat.org/examples/rsem/mcov.eqs.
7Because EQS uses a different order from vech(�) when vectorizing the covariance matrix, the matrix in the file

weight.txt is a permutation of �̂; it also has an extra row and column of zeros. To print the matrix in R console, use
ex1$sem.

8For the adjusted statistic TAML , EQS approximates the m̂2 using the nearest integer and obtains the p-value using
the approximated degrees of freedom.

http://rpackages.psychstat.org/examples/rsem/mcov.eqs
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TABLE 1.
Test statistics and parameter estimates for model (13) with open–closed-book data.

(a) Statistics for overall model evaluation.

MH(0.10) 2-stage NML
TRML TAML TCRADF TRF TRML TAML TCRADF TRF

T 1.376 1.220 1.427 0.472 1.361 1.284 1.285 0.425
p-value 0.711 0.748 0.699 0.702 0.715 0.733 0.733 0.736

(b) Parameter estimates θ̂ , their SEs, and z-scores.

θ MH(0.10) 2-stage NML

θ̂ SE z θ̂ SE z

τ1 39.447 1.698 23.228 39.187 1.748 22.416
τ2 47.192 1.524 30.969 46.660 1.585 29.435
λ21 1.289 0.046 28.145 1.290 0.046 28.251
λ42 0.876 0.024 35.850 0.882 0.026 33.681
φ11 87.660 34.171 2.565 102.040 33.993 3.002
φ21 78.812 23.546 3.347 81.852 23.668 3.458
φ22 192.695 53.888 3.576 200.402 54.635 3.668
ψ11 180.696 30.851 5.857 182.097 29.874 6.095
ψ22 41.575 27.150 1.531 30.703 25.392 1.209
ψ33 10.545 55.172 0.191 19.499 51.742 0.377
ψ44 203.808 41.220 4.944 199.950 38.821 5.151

The file mcov.out also contains multiple fit indices, parameter estimates θ̂ and their SEs,
and standardized solutions. In particular, there are two SEs following each parameter estimate as
shown below for λ21.

VECTORS = V2 = 1.289*F1 + 1.000 E2
0.050
25.905@
(0.046)
(28.145@)

The one immediately below the parameter estimate is obtained from the normal-distribution-
based information matrix by treating μ̂ as a vector of sample means and �̂ as a sample covariance
matrix, which should be ignored. The one based on (11) is within parentheses, which is consistent
and should be used when inferring the significance of the estimate. EQS uses the sign @ to
indicate that the estimate is significant at 0.05 level. The parameter estimates and their SEs based
on (11) are also part of the default output of our R package, as shown in lines 39 to 49 of
Appendix B, where (A,B) denotes a path from B to A. For example, in Line 49, (V4,F2)
represents the factor loading from F2 to V4. The three numbers on the right side are the parameter
estimate, its consistent SE based on (11), and the corresponding z-score.

Test statistics, parameter estimates, and their SEs are represented in Table 1, where results
under MH(0.10) are obtained by the M-estimator with Huber-type weights at ϕ = 0.10. Parallel
results using 2-stage NML9 are also reported in Table 1 for comparison purpose, where the SEs
and z-scores are also based on a sandwich-type covariance matrix (Yuan & Lu, 2008). Two-stage
NML is chosen for comparison with MH(0.10) because it has advantages in including auxiliary

9The R code for the analysis is rsem(mardiamv25, c(1,2,4,5), "mcov.eqs", varphi=0).
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TABLE 2.
Test statistics and parameter estimates for model (13) with 5 cases of the open–closed-book data being contaminated.

(a) Statistics for overall model evaluation.

MH(0.10) 2-stage NML
TRML TAML TCRADF TRF TRML TAML TCRADF TRF

T 0.803 0.788 0.725 0.238 5.126 2.516 2.093 0.699
p-value 0.849 0.852 0.867 0.870 0.163 0.113 0.553 0.555

(b) Parameter estimates θ̂ , their SEs, and z-scores.

θ MH(0.10) 2-stage NML

θ̂ SE z θ̂ SE z

τ1 40.813 1.625 25.122 39.436 2.155 18.298
τ2 49.397 1.547 31.925 52.918 2.900 18.251
λ21 1.291 0.046 28.326 1.399 0.087 16.072
λ42 0.899 0.028 32.088 1.019 0.073 14.005
φ11 70.171 26.699 2.628 127.887 42.616 3.001
φ21 68.254 20.463 3.336 226.830 104.116 2.179
φ22 202.579 63.329 3.199 691.490 309.217 2.236
ψ11 168.629 31.932 5.281 250.928 66.602 3.768
ψ22 52.116 27.826 1.873 99.705 102.299 0.975
ψ33 6.732 61.601 0.109 −62.183 122.096 −0.509
ψ44 216.024 50.702 4.261 546.936 319.965 1.709

variables over direct NML (Savalei & Bentler, 2009; Yuan & Lu, 2008), and test statistics for 2-
stage NML also perform better under varied conditions (Savalei & Falk, in press). The statistics
under MH(0.10) and 2-stage NML in Table 1(a) are very comparable, suggesting that the model
in (12) fits the data well. Most of the parameter estimates and SEs under MH(0.10) are also
comparable to those under 2-stage NML in Table 1(b). This is because the sample is very close
to being normally distributed. Actually, the normalized Mardia’s (1970) multivariate kurtosis for
the original open–closed-book data is 0.057, not statistically significant at all.

The results in Table 1 suggest that the M-estimator with Huber-type weights generates re-
sults very close to those by 2-stage NML when data are close to normally distributed. However,
practical data typically do not follow a normal distribution as close as the open–closed-book
data. Actually, among all raw data that have been used in the SEM literature and are available
to us, the distribution of the open–closed-book data is the closest to a normal distribution. In the
created missing data set, only three variables are observed on each of the last five cases. Mul-
tiplying each of these 15 numbers by 5 created a contaminated data set.10 Applying the same
procedures that generated Table 1 to this new data set generates the results in Table 2, where the
results under MH(0.10) and 2-stage NML are quite different. In particular, SEs under 2-stage
NML in Table 2(b) are uniformly greater than those under MH(0.10). There is also a Heywood
case under 2-stage NML. The statistics in Table 2(a) under 2-stage NML still endorse the model
because they all account for non-normality by including fourth-order moments, but they are not
as supportive as those under MH(0.10). In addition, with default starting values it took 391 it-
erations for EQS to obtain the estimates under 2-stage NML while it only took 12 iterations for
EQS to obtain the estimates under MH(0.10).

The parameter estimates under MH(0.10) and 2-stage NML in Table 2 mostly differ in the
estimates of factor variances–covariance (φs) and error variances (ψs). This is because model

10The data can be obtained at http://rpackages.psychstat.org/examples/rsem/mardiamv25_contaminated.dat.

http://rpackages.psychstat.org/examples/rsem/mardiamv25_contaminated.dat
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identification is enforced by λ11 = λ32 = 1. If we set φ11 = φ22 = 1 for model identification, we
will notice more difference in the 2-stage NML estimates of the factor loading parameters (λs)
between using the original and contaminated data sets. The SEs under 2-stage NML, obtained
using the sandwich-type covariance matrix, are often called robust SEs in the SEM literature.
Comparing the results in Tables 1 and 2, we can observe that SEs under 2-stage NML change
dramatically with data contamination. For example, the SE of φ̂22 under 2-stage NML in Table 1
is 54.635 while that in Table 2 is 309.217. Thus, the “robust SEs” under 2-stage NML are not
robust at all. In comparison, the changes in parameter estimates and SEs under MH(0.10) from
Table 1 to Table 2 are much smaller.

The R code in Line 5 in Appendix B conducts the basic robust analysis. The function rsem
will perform other robust analysis when supplied with different arguments. The full specification
of this function is

rsem(dset, select, EQSmodel, moment = TRUE, varphi = 0.1,
max.it = 1000, eqsdata = "data.txt",
eqsweight = "weight.txt",
EQSpgm = "C:/Progra~1/EQS61/WINEQS.EXE", serial="1234")

The first argument dset specifies the data to be used and this argument is required. The sec-
ond argument select supplies the indices of variables that are used for analysis in the structural
model. In the previous example, select=c(1,2,4,5), meaning that the first, second, fourth,
and fifth variables are selected. Not providing the argument select implies that all the vari-
ables in the data set will be used in the structural model or there is no auxiliary variable. The
third argument EQSmodel provides the name of the EQS input file. In the previous example,
EQSmodel="mcov.eqs". If omitted, only the saturated mean vector and covariance matrix
are estimated11 and no structural model will be analyzed. The fourth argument is moment and its
default value TRUE indicates that mean and covariance structure analysis will be conducted. Al-
ternatively, if moment=FALSE, covariance structure analysis will be conducted without means.
EQS code for covariance structure analysis with the open–closed-book data is provided in Ap-
pendix D. The fifth argument varphi=0.1 specifies the Huber-type weight function according
to (3) that gives the approximate proportion of cases to be down-weighted. The default value is
10 %. If varphi=0, 2-stage NML analysis is performed and no case is down-weighted. The
sixth argument max.it defines the maximum number of iterations for the ER algorithm. The
default is 1000 and if the number is exceeded, the user will be prompted to supply a greater num-
ber. The seventh argument eqsdata specifies the file name to save the estimates �̂ and μ̂ from
the ER algorithm and should be the same as the file name for the argument data in the EQS
input file (e.g., Line 7 in Appendix C). The eighth argument eqsweight specifies the file name
to save the sandwich-type covariance matrix �̂ from the ER algorithm and should be the same
as the file name for the argument weight in the EQS input file (e.g., Line 5 in Appendix C).
The next argument tells the path to the EQS program and it can be omitted typically. The last
argument serial specifies the serial number of the EQS program (see Mair et al., 2010).

After running the function rsem, in addition to the default output discussed earlier, results
from the analysis are also saved into the object ex1, according to Line 5 in Appendix B. For ex-
ample, ex1$misinfo includes the missing data pattern information and sorted data according
to missing data patterns; and ex1$sem provides the estimated mean vector, covariance matrix,
and sandwich-type covariance matrix �̂. Other components of ex1 can be viewed using the
function names(ex1).

11The SEs of μ̂ and �̂ according to (8a) and (8b) will be in the default output of R. The matrix �̂ according to the
order of β in (8a) and (8b) will be saved into the object ex1, which is useful when SEM software other than EQS is
used.
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FIGURE 1.
Boxplots of Peabody Individual Achievement Test (PIAT) math data. Circles represent potential outliers that are more
than 1.5 times interquantile range away from the first and third quantiles, respectively.

5. Robust Analysis of NLSY97 with Growth Curve Models

The NLSY97 consists of a nationally representative sample of approximately 9,000 youths
who were 12 to 16 years old as of December 31, 1996. Many variables in the surveys were
followed on an annual basis. The data set available to us consisted of yearly administration of the
mathematics subtest of the Peabody Individual Achievement Test (PIAT) from 1997 to 2000 on
N = 399 students. Information on family income, fathers’ and mothers’ years of education was
also collected for this sample in 1997. We were interested in using this data set to investigate how
mathematical ability grew over the 4-year period. Each of the seven variables contained missing
values, only 126 cases (about one third) were completely observed, and there were a total of 44
observed data patterns. The data were also significantly non-normally distributed, with Mardia’s
measure of multivariate kurtosis = 20.376, and its normalized version = 21.020 (Yuan et al.,
2004b). Figure 1 contains the boxplots of the 4 measures of mathematical ability, showing that
each variable is skewed to the left due to outstanding cases.

More descriptive statistics, including the mean, the standard deviation (SD), the minimum
(Min), the maximum (Max) and the percentage of complete (PC) data, for each variable are
reported in Table 3. The average family income was about $17,470 in 1997 and both parents had
an average of about 12 years of education. Because the mathematical variables are longitudinal,
we will use latent growth curve models to investigate the change of mathematical ability over the
4-year period. Both unconditional and conditional models will be studied (Preacher, Wichman,
MacCallum, & Briggs, 2008).

5.1. Unconditional Latent Growth Curve Model

By using the unconditional latent growth curve model, we focus on the analysis of the
growth rate of mathematical ability. The variables—family income, fathers’ education and moth-
ers’ education—are included as auxiliary variables. Let y be the vector of mathematical abilities
measured for the 4 years. The unconditional linear growth curve model can be written as

y = 
ξ + e, (14)
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TABLE 3.
Descriptive statistics of the NLSY97 sample (N = 399).

Variables n Mean SD Min Max PC

Math 1997 375 61.16 15.89 16 100 94
Math 1998 377 63.27 17.22 1 98 94
Math 1999 357 67.56 16.65 0 100 89
Math 2000 350 69.69 17.60 1 100 88
Family income ($1,000) 234 17.47 14.84 3 83 58
Fathers’ education 275 12.24 2.86 3 20 69
Mothers’ education 362 12.02 2.61 3 20 91

TABLE 4.
Unconditional latent growth curve analysis of mathematical ability.

(a) Statistics for overall model evaluation.

MH(0.10) 2-stage NML
TRML TAML TCRADF TRF TRML TAML TCRADF TRF

T 9.908 8.557 8.418 1.703 14.679 11.606 12.058 2.463
p 0.078 0.073 0.135 0.133 0.012 0.021 0.034 0.033

(b) Parameter estimates θ̂ , their SEs, and z-scores.

θ MH(0.10) 2-stage NML

θ̂ SE z θ̂ SE z

τ1 60.865 0.745 81.749 60.645 0.780 77.797
τ2 3.177 0.226 14.038 3.100 0.258 12.005
φ11 174.450 19.254 9.060 177.489 24.590 7.218
φ12 −6.290 4.904 −1.283 −4.938 7.664 −0.644
φ22 6.791 2.746 2.473 6.994 4.000 1.748
ψ11 62.406 13.870 4.499 87.576 25.896 3.382
ψ22 77.177 9.105 8.476 103.477 14.275 7.249
ψ33 73.794 9.818 7.516 90.147 14.391 6.264
ψ44 72.463 17.173 4.220 109.889 27.734 3.962

where


 =
(

1 1 1 1
0 1 2 3

)′

and ξ = (ξ1, ξ2)
′ with ξ1 being the individual initial level of mathematical ability in 1997 and ξ2

being the growth rate from 1997 to 2000. Let τ = E(ξ) = (τ1, τ2)
′ with τ1 representing the aver-

age initial level and τ2 representing the average change rate; � = (φjk) = Cov(ξ ) with φ11, φ22,
and φ12 representing individual difference in the initial level and in the growth rate of mathemat-
ical ability and in their covariance, respectively; and 
 = Cov(e) = diag(ψ11,ψ22,ψ33,ψ44) be
a diagonal matrix containing the variances of unique factors or measurement errors. The mean
and covariance structure of the y in (14) can be expressed as that in (13). The EQS input file for
estimating the model (14) is given in Appendix E.

Both 2-stage NML and MH(0.10) are used for the analysis of the unconditional model, and
the results are reported in Table 4. All the four test statistics following 2-stage NML suggest that
there is a significant difference between the model and the data. However, none of the statistics
under MH(0.10) is statistically significant at the 0.05 level. Given the boxplots in Figure 1 and the
highly significant multivariate kurtosis, we would trust the results following MH(0.10) more than



KE-HAI YUAN AND ZHIYONG ZHANG 817

those following 2-stage NML. Actually, estimates for the structural parameters under MH(0.10)
are very comparable to those under 2-stage NML, while estimates for error variances under
MH(0.10) are smaller. In particular, the SEs under MH(0.10) are uniformly smaller, implying
that the robust estimates are more efficient. Due to being less efficient, φ̂22 under 2-stage NML
is not statistically significant at the 0.05 level.

According to the robust analysis, the average initial level of mathematical ability in 1997 is
about 60.865 and the growth rate from 1997 to 2000 is about 3.177. Individuals are significantly
different in both initial level and growth rate. Students with higher initial levels tend to have lower
growth rates although φ̂12 is not significant at the 0.05 level. Actually, the p-value associated with
φ̂12 = −6.29 (z = −1.283) for a one-sided test is about 0.1.

5.2. Conditional Latent Growth Curve Model

With the conditional latent growth curve model, we evaluate how family income and parents’
education are related to the initial level and growth rate of mathematical ability of children. The
conditional model can be specified as

y = 
ξ + e, (15)

ξ = τ + Bv + ζ , (16)

where y, 
, ξ , and e are the same as used in the unconditional model. The v is a vector of family
income, fathers’ education and mothers’ education. The matrix

B =
(

β11 β12 β13
β21 β22 β23

)

contains the regression coefficients of initial level and growth rate of math ability on family
income, fathers’ education and mothers’ education, and τ contains the intercepts. The vector
ζ contains the residuals of ξ after being predicted by v. There is no auxiliary variable in the
analysis. The EQS input file for estimating the model in (15) and (16) is given in Appendix F.

The results following the analyses by MH(0.10) and 2-stage NML for the conditional model
are reported in Table 5. Although test statistics following 2-stage NML in Table 5(a) are not
significant at the 0.05 level, those following MH(0.10) give stronger support for the substantive
model in (15) and (16). Similar to those in Table 4, while the estimates for the structural param-
eters following the two methods are comparable, those for the error variances are clearly smaller
under MH(0.10). The SEs for the parameter estimates following MH(0.10) in Table 5 are again
uniformly smaller. The z-scores for estimates τ̂2 and φ̂22 under MH(0.10) imply that, after con-
trolling the family background variables, the average growth rate is still statistically significant
and individuals are significantly different in growth rate.

The z-scores for the six beta coefficients indicate that only the variable income positively
predicts the initial level of mathematical ability after controlling for parents’ education. Neither
fathers’ education nor mothers’ education significantly predicts the initial level or the growth rate
of children’s math ability. Such a conclusion might also be drawn by comparing the estimates
φ̂11, φ̂12, and φ̂22 in Tables 4 and 5, and those in Table 5 are only slightly smaller.

6. Discussion and Conclusion

In social and behavioral sciences, data are typically non-normally distributed (Micceri,
1989). The aim of the paper is to develop a robust SEM procedure for real data like NLSY97,
which have missing values and a significant multivariate kurtosis. According to Rubin (1976),
MAR mechanism can be ignored if the analysis is proceeded by ML. However, both the miss-
ing data mechanism and the population distribution are typically unknown. The first stage of the
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TABLE 5.
Conditional latent growth curve analysis of mathematical ability.

(a) Statistics for overall model evaluation.

MH(0.10) 2-stage NML
TRML TAML TCRADF TRF TRML TAML TCRADF TRF

T 13.735 11.884 13.332 1.223 16.089 12.975 15.242 1.405
p 0.248 0.293 0.272 0.270 0.138 0.164 0.172 0.168

(b) Parameter estimates θ̂ , their SEs, and z-scores.

θ MH(0.10) 2-stage NML

θ̂ SE z θ̂ SE z

τ1 51.696 4.266 12.117 51.548 4.292 12.010
τ2 3.717 1.462 2.542 2.866 1.851 1.548
β11 0.231 0.058 3.999 0.247 0.058 4.225
β12 −0.114 0.411 −0.277 −0.125 0.443 −0.283
β13 0.552 0.410 1.345 0.539 0.430 1.254
β21 0.001 0.018 0.079 0.010 0.021 0.461
β22 0.150 0.135 1.112 0.163 0.149 1.094
β23 −0.197 0.123 −1.598 −0.157 0.143 −1.102
φ11 160.875 18.256 8.812 161.062 23.266 6.923
φ12 −5.514 4.793 −1.150 −4.804 7.468 −0.643
φ22 6.370 2.744 2.321 6.571 4.015 1.637
ψ11 64.164 14.137 4.539 89.091 25.920 3.437
ψ22 76.687 9.044 8.480 102.918 14.178 7.259
ψ33 72.774 9.705 7.498 89.010 14.159 6.287
ψ44 73.807 17.045 4.330 111.824 27.419 4.078

developed procedure allows us to easily include auxiliary variables so that it is more realistic to
assume that the missing data mechanism is MAR. The tuning parameter ϕ allows us to choose
different weighting schemes according to (3) so that the resulting estimating equations in (1)
and (2) approximate those obtained when setting the score functions corresponding to the true
unknown likelihood function to zero. Thus, the robust estimates are closer to the true population
values of the parameters that generated the data than pseudo NMLEs.

We set the default value of ϕ at 0.10 in the rsem package, which implies that observations
with di > ρi = c0.10 will get weights smaller than 1.0 according to (3), where c0.10 is the critical
value corresponds to the 90 % quantile of a chi-distribution. If letting ϕ = 0.20, then additional
cases with di ∈ (c0.20, c0.10] will also be downweighted in the estimation process. Because, at
ϕ = 0.20, cases with di ∈ (c0.20, c0.10] have weights only slightly smaller than 1.0, parameter
estimates corresponding to the two ϕs may only differ slightly. Outlying cases with extreme di

will get weights close to zero whether ϕ = 0.05, 0.10, or 0.20. Empirical results in Zhong & Yuan
(2011) for complete data indicate that using a robust method matters far more than choosing a
particular ϕ. A greater ϕ gives the estimates more protection against data contamination while
the estimates will be less efficient when data are truly from a normally distributed population
without contamination. In our experience, ϕ = 0.10 keeps a good balance between efficiency
and protection against anomalies. Researchers who like to pursue optimality are referred to Yuan
et al. (2004a), where empirical efficiency of parameter estimates by bootstrap is used to select
the tuning parameter ϕ.

Statistical theory for robust estimation has been developed primarily within the class of ellip-
tical distributions (Huber, 1981; Hampel, Ronchetti, Rousseeuw & Stahl, 1986), mainly because
Equations (1) and (2) are the score functions defining the MLEs of ν and V when wi1(di), wi2(di)
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and wi3(di) are properly chosen. In practice, data contamination or outliers make a sample from
a truly elliptical distribution skewed at the sample level. In such a situation, a robust procedure
is definitely preferred. If the true distribution of x is skewed, then the M-estimators ν̂ and V̂
may not converge to the population means and covariance matrix; and NML estimates may not
converge to the population means and covariance matrix either when missing values are MAR.
Even in situation where NMLEs are known to be consistent and there is no data contamination
or outliers, the estimates of variance parameters by NML may contain biases that are larger than
the parameter values themselves (Yuan, Wallentin & Bentler, in press). Monte Carlo studies and
empirical results with real and simulated complete data in Zu & Yuan (2010) and Zhong & Yuan
(2011) indicate that robust methods lead to less biased and more efficient parameter estimates
than NML even when populations are skewed. Preliminary results reported in Tong, Zhang and
Yuan (2011) indicate that the two-stage robust procedure developed in this paper also leads to
less biased parameter estimates and more reliable test statistics than NML when samples contain
missing values. Thus, we expect this procedure to yield more reliable analysis than NML in most
practical situations. Of course, the performance of the robust method over NML does not mean
that the former is the best. Actually, with typical unknown population distributions in practice, it
is unlikely to find a method that yields unbiased and most efficient parameter estimates.

In the rsem package, we implemented the Huber-type M-estimators because they are very
close to NMLEs for normally distributed population and have been shown to work well in prac-
tical data analysis (Yuan et al., 2004a; Zhong & Yuan, 2011; Zu & Yuan, 2010). However, the
Huber-type M-estimator cannot handle the situation when the proportion of extreme values is
greater than 1/(q + 1), as measured by a property called the breakdown point. If there is a suspi-
cion that a large proportion of extreme observations due to contamination exists, one may need
to choose the S- or the MCD-estimators (Rocke, 1996; Cheng & Victoria-Feser, 2002). Both can
have a breakdown point of approximately 1/2, while the S-estimator is usually more efficient.
Since S-estimators also satisfy Equations (1) and (2), the ER algorithm and the methodology
development in Sections 2 and 3 also apply to S-estimators. However, these estimators tend to
be less efficient than an M-estimator. Actually, many observations get weights of zero in an es-
timator with a high breakdown point. When the sample size is not large enough, an estimator
with a high breakdown point may end up with a singular �̂, which does not permit us to get
valid statistics at the second-stage analysis. In additional to breakdown point, the starting values
for the ER algorithm may affect the robustness of the converged estimators. We set the starting
values of ν and V in the ER algorithm at respectively 0 and I in the R package rsem, which are
obviously not affected by contaminated cases.

The development of the paper parallels that of 2-stage NML. Another approach is to directly
estimate the structural parameters without explicitly estimating the saturated model. This can be
done by embedding the structural model into a multivariate t-distribution or Equations (1) and (2)
of the paper. With the existing evidence on advantages of 2-stage NML over direct NML (Savalei
& Bentler, 2009; Savalei & Falk, in press), we do not expect that a direct robust approach will
out-perform the 2-stage approach as developed in this paper.

Following the typical practice of SEM, this paper does not consider prior information on
model parameters. When prior information is available, one may include the information using a
Bayesian analysis. In particular, the Bayesian procedure developed in Lee & Xia (2008) allows
the sample to contain missing values and is robust to data contamination.
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Appendix A. Mathematical Details for Evaluating the Matrix ϒ̂

This appendix provides the development and formulas for evaluating the ϒ̂ in (8b) with
Huber-type weight. The formulas are programmed in the R package introduced in Section 4.

With the Huber-type weight, wi3(di) = 1. Then the estimating equations in (1) and (2) are
derived from

gi1(α) = wi1(dνi )
′V−1

i (xi − νi ), (A.1)

and

gi2(α) = 1

2
tr
{
V−1

i (dVi )V
−1
i

[
wi2(xi − νi )(xi − νi )

′ − Vi

]}
, (A.2)

where d is for differentials. It follows from (A.1) and (A.2) that

dgi1(α) = −wi1(dνi )
′V−1

i (dνi ) − wi1(dνi )
′V−1

i (dVi )V
−1
i (xi − νi )

+ (dwi1)(dνi )
′V−1

i (xi − νi ) (A.3)

and

dgi2(α) = − tr
{
V−1

i (dVi )V
−1
i (dVi )V

−1
i

[
wi2(xi − νi )(xi − νi )

′]}

+ 1

2
tr
{
V−1

i (dVi )V
−1
i (dVi )

}

− 1

2
tr
{
V−1

i (dVi )V
−1
i wi2

[
(dνi )(xi − νi )

′ + (xi − νi )(dνi )
′]}

+ 1

2
tr
{
V−1

i (dVi )V
−1
i

[
(dwi2)(xi − νi )(xi − νi )

′]}. (A.4)

Noting that both wi1 and wi2 are function of di = [(xi − νi )
′V−1

i (xi − νi )]1/2, we have

dwi1(di) =
{

0 if di ≤ ρi,
ρi

d3
i

[(dνi )
′V−1

i (xi − νi ) + 0.5(xi − νi )
′V−1

i (dVi )V
−1
i (xi − νi )] if di > ρi

(A.5)

and

dwi2(di) =
{0 if di ≤ ρi,

ρ2
i

κid
4
i

[2(dνi )
′V−1

i (xi − νi ) + (xi − νi )
′V−1

i (dVi )V
−1
i (xi − νi )] if di > ρi.

(A.6)

Thus, when di > ρi , we have

dgi1(α) = −wi1(dνi )
′V−1

i (dνi ) − wi1(dνi )
′V−1

i (dVi )V
−1
i (xi − νi )

+ ρi

d3
i

(dνi )
′V−1

i (xi − νi )(xi − νi )
′V−1

i (dνi )

+ ρi

2d3
i

(xi − νi )
′V−1

i (dVi )V
−1
i (xi − νi )(xi − νi )

′V−1
i (dνi ) (A.7)

and
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dgi2(α) = − tr
{
V−1

i (dVi )V
−1
i (dVi )V

−1
i

[
wi2(xi − νi )(xi − νi )

′]}

+ 1

2
tr
{
V−1

i (dVi )V
−1
i (dVi )

}

− 1

2
tr
{
V−1

i (dVi )V
−1
i wi2

[
(dνi )(xi − νi )

′ + (xi − νi )(dνi )
′]}

+ ρ2
i

κid
4
i

tr
{
V−1

i (xi − νi )(xi − νi )
′V−1

i (dVi )V
−1
i (xi − νi )(dνi )

′}

+ ρ2
i

2κid
4
i

tr
{
V−1

i (xi − νi )(xi − νi )
′V−1

i (dVi )V
−1
i (xi − νi )(xi − νi )

′V−1
i (dVi )

}
.

(A.8)

Notice that, for matrices A, B, C, and D of proper orders, there exists

tr(ABCD) = vec′(D)
(
A ⊗ C′)vec

(
B′) = vec′(D′)(C′ ⊗ A

)
vec(B). (A.9)

Let

bi = V−1
i (xi − νi ), Hi = V−1

i (xi − νi )(xi − νi )
′V−1

i ,

Ei = ∂νi

∂ν ′ , and Fi = ∂ vec(Vi )

∂v′ .

Using (A.9), it follows from (A.3) to (A.8) that, when di ≤ ρi ,

∂gi1(α)

∂ν ′ = −E′
iV

−1
i Ei ,

∂gi1(α)

∂v′ = −E′
i

(
V−1

i ⊗ b′
i

)
Fi ,

∂gi2(α)

∂ν ′ = − 1

κi

F′
i

(
bi ⊗ V−1

i

)
Ei ,

∂gi2(α)

∂v′ = −F′
i

[
1

κi

(
Hi ⊗ V−1

i

) − Wi

]
Fi;

and when di > ρi ,

∂gi1(α)

∂ν ′ = −E′
i

(
wi1V−1

i − ρi

d3
i

Hi

)
Ei

∂gi1(α)

∂v′ = −E′
i

[
wi1

(
V−1

i ⊗ b′
i

) − ρi

2d3
i

(
Hi ⊗ b′

i

)]
Fi ,

∂gi2(α)

∂ν ′ = −F′
i

[
wi2

(
bi ⊗ V−1

i

) − ρ2
i

κid
4
i

(Hi ⊗ bi )

]
Ei ,

∂gi2(α)

∂v′ = −F′
i

[
wi2

(
Hi ⊗ V−1

i

) − Wi − ρ2
i

2κid
4
i

(Hi ⊗ Hi )

]
Fi .

Appendix B. R Code for Robust SEM and Its Output

1library(rsem)
2setwd("c:/rsemmv")
3mardiamv25<-read.table("mardiamv25.dat", header=T,
4na.string="-99")
5ex1<-rsem(mardiamv25, c(1,2,4,5), "mcov.eqs")
6
7## Sample output from the above analysis.
8
9Sample size n = 88
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10Total number of variables q= 5
11
12The following 4 variables are selected for SEM models
13Mechanics Vectors Analysis Statistics
14
15There are 2 missing data patterns. They are
16n nvar Mechanics Vectors Algebra Analysis Statistics
17Pattern 1 57 5 1 1 1 1 1
18Pattern 2 31 3 1 0 1 1 0
19
20Estimated means:
21[1] 39.18057 50.90668 47.20384 41.05387
22
23Estimated covariance matrix:
24Mechanics Vectors Analysis Statistics
25[1,] 289.3151 124.7135 105.4223 102.6819
26[2,] 124.7135 182.4506 95.7065 108.5030
27[3,] 105.4223 95.7065 202.1062 180.7338
28[4,] 102.6819 108.5030 180.7338 373.3670
29
30Test statistics:
31T p
32RML 1.37630 0.71110
33AML 1.21980 0.74826
34CRADF 1.42660 0.69930
35RF 0.47245 0.70229
36
37Parameter estimates:
38Parameter SE z
39(E1,E1) 180.6959600 30.85084800 5.8570824
40(E2,E2) 41.5744760 27.15028700 1.5312721
41(E3,E3) 10.5459460 55.17236400 0.1911454
42(E4,E4) 203.8073000 41.21980500 4.9444023
43(D1,D1) 87.6599860 34.17127900 2.5653118
44(D1,D2) 78.8119050 23.54609100 3.3471333
45(D2,D2) 192.6941800 53.88799900 3.5758273
46(F1,V999) 39.4471330 1.69824770 23.2281386
47(F2,V999) 47.1918230 1.52386050 30.9685978
48(V2,F1) 1.2892989 0.04580930 28.1449160
49(V4,F2) 0.8755553 0.02442281 35.8498963

Appendix C. EQS Code for the Model in Equations (12) and (13)

1/TITLE
2EQS 6.1: Mean and covariance structure analysis.
3The file name is mcov.eqs.
4/SPECIFICATION
5weight="weight.txt";
6cases=88; variables=4; matrix=covariance;
7analysis=moment; methods=ML, robust; data="data.txt";
8/LABELS
9V1=Mechanics; V2=Vectors; V3=Analysis; V4=Statistics;
10/EQUATIONS
11V1= F1+E1;
12V2= *F1+E2;
13V3= F2+E3;
14V4= *F2+E4;
15F1= *V999+D1;
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16F2= *V999+D2;
17/VARIANCES
18E1-E4= *;
19D1=*;
20D2=*;
21/COVARIANCES
22D1,D2= *;
23/TECHNICAL
24conv=0.0001;
25itera=500;
26/Means
27/INEQUALITY
28(E3, E3)>-100;
29/OUTPUT
30CODEBOOK;
31DATA="mcov.ETS";
32PARAMETER ESTIMATES;
33STANDARD ERRORS;
34LISTING;
35/END

Appendix D. EQS Code for Confirmatory Factor Analysis with Four Variables

1/TITLE
2EQS 6.1: Covariance structure analysis. The file name is cov.eqs
3/SPECIFICATION
4weight="weight.txt";
5cases=88; variables=4; matrix=covariance;
6analysis=covariance; methods=ML, robust; data="data.txt";
7/LABELS
8V1=Mechanics; V2=Vectors; V3=Analysis; V4=Statistics;
9/EQUATIONS
10V1= F1+E1;
11V2= *F1+E2;
12V3= F2+E3;
13V4= *F2+E4;
14/VARIANCES
15E1-E4= *;
16F1=*;
17F2=*;
18/COVARIANCES
19F1,F2= *;
20/TECHNICAL
21conv=0.0001;
22itera=500;
23/OUTPUT
24CODEBOOK;
25DATA="cov.ETS";
26PARAMETER ESTIMATES;
27STANDARD ERRORS;
28LISTING;
29/END

Appendix E. EQS Code for the Unconditional Latent Growth Curve Model in Equation (14)

1/TITLE
2Unconditional latent growth curve analysis.
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3The file name is nlsy4.eqs.
4/SPECIFICATION
5weight="weight.txt";
6cases=399; variables=4; matrix=covariance;
7analysis=moment; methods=ML, robust; data="data.txt";
8/EQUATIONS
9V1= F1 + E1;
10V2= F1 + F2 + E2;
11V3= F1 + 2F2 + E3;
12V4= F1 + 3F2 + E4;
13F1= *V999+D1;
14F2= *V999+D2;
15/VARIANCES
16E1-E4= *;
17D1=*;
18D2=*;
19/COVARIANCES
20D1,D2= *;
21/TECHNICAL
22conv=0.0001;
23itera=500;
24/Means
25/OUTPUT
26CODEBOOK;
27DATA="nlsy4.ETS";
28PARAMETER ESTIMATES;
29STANDARD ERRORS;
30LISTING;
31/END

Appendix F. EQS Code for the Conditional Latent Growth Curve Model in Equations (15)
and (16)

1/TITLE
2Conditional latent growth curve analysis.
3The file name is nlsy4p.eqs.
4/SPECIFICATION
5weight="weight.txt";
6cases=399; variables=7; matrix=covariance;
7analysis=moment; methods=ML, robust; data="data.txt";
8/EQUATIONS
9V1= F1 + E1;
10V2= F1 + F2 + E2;
11V3= F1 + 2F2 + E3;
12V4= F1 + 3F2 + E4;
13V5=*V999+E5;
14V6=*V999+E6;
15V7=*V999+E7;
16F1= *V999+*V5+*V6+*V7+D1;



KE-HAI YUAN AND ZHIYONG ZHANG 825

17F2= *V999+*V5+*V6+*V7+D2;
18/VARIANCES
19E1-E7= *;
20D1=158*;
21D2=7*;
22/COVARIANCES
23D1,D2= *;
24E5,E6=*;
25E5,E7=*;
26E6,E7=*;
27/TECHNICAL
28conv=0.0001;
29itera=1000;
30/Means
31/OUTPUT
32CODEBOOK;
33DATA="nlsy4p.ETS";
34PARAMETER ESTIMATES;
35STANDARD ERRORS;
36LISTING;
37/END

References

Arminger, G., & Sobel, M.E. (1990). Pseudo-maximum likelihood estimation of mean and covariance structures with
missing data. Journal of the American Statistical Association, 85, 195–203.

Bentler, P.M. (2008). EQS 6 structural equations program manual. Encino: Multivariate Software.
Bentler, P.M., & Yuan, K.-H. (1999). Structural equation modeling with small samples: test statistics. Multivariate Be-

havioral Research, 34, 181–197.
Browne, M.W. (1984). Asymptotic distribution-free methods for the analysis of covariance structures. British Journal of

Mathematical & Statistical Psychology, 37, 62–83.
Cheng, T.-C., & Victoria-Feser, M.-P. (2002). High-breakdown estimation of multivariate mean and covariance with

missing observations. British Journal of Mathematical & Statistical Psychology, 55, 317–335.
D’Agostino, R.B., Belanger, A., & D’Agostino, R.B. Jr. (1990). A suggestion for using powerful and informative tests

of normality. American Statistician, 44, 316–321.
Enders, C.K. (2010). Applied missing data analysis, New York: Guilford.
Enders, C.K., & Bandalos, D.L. (2001). The relative performance of full information maximum likelihood estimation for

missing data in structural equation models. Structural Equation Modeling, 8, 430–457.
Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., & Stahel, W.A. (1986). Robust statistics: the approach based on influ-

ence functions. New York: Wiley.
Hu, L., Bentler, P.M., & Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted? Psychological

Bulletin, 112, 351–362.
Huber, P.J. (1981). Robust statistics. New York: Wiley.
Lee, S.Y., & Xia, Y.M. (2006). Maximum likelihood methods in treating outliers and symmetrically heavy-tailed distri-

butions for nonlinear structural equation models with missing data. Psychometrika, 71, 565–585.
Lee, S.Y., & Xia, Y.M. (2008). A robust Bayesian approach for structural equation models with missing data. Psychome-

trika, 73, 343–364.
Little, R.J.A. (1988). Robust estimation of the mean and covariance matrix from data with missing values. Applied

Statistics, 37, 23–38.
Liu, C. (1997). ML estimation of the multivariate t distribution and the EM algorithm. Journal of Multivariate Analysis,

63, 296–312.
Lopuhaä, H.P. (1989). On the relation between S-estimators and M-estimators of multivariate location and covariances.

Annals of Statistics, 17, 1662–1683.
Mair, P., Wu, E., & Bentler, P.M. (2010). EQS goes R: simulations for SEM using the package REQS. Structural Equation

Modeling, 17, 333–349.
Mardia, K.V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519–530.
Mardia, K.V., Kent, J.T., & Bibby, J.M. (1979). Multivariate analysis. New York: Academic Press.



826 PSYCHOMETRIKA

Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105, 156–
166.

Preacher, K.J., Wichman, A.L., MacCallum, R.C., & Briggs, N.E. (2008). Latent growth curve modeling. Thousand
Oaks: Sage.

Raykov, T. (2005). Analysis of longitudinal studies with missing data using covariance structure modeling with full-
information maximum likelihood. Structural Equation Modeling, 12, 493–505.

Rocke, D.M. (1996). Robustness properties of S-estimators of multivariate location and shape in high dimension. Annals
of Statistics, 24, 1327–1345.

Rubin, D.B. (1976). Inference and missing data (with discussions). Biometrika, 63, 581–592.
Satorra, A., & Bentler, P.M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In

A. von Eye & C.C. Clogg (Eds.), Latent variables analysis: applications for developmental research (pp. 399–419).
Newbury Park: Sage.

Savalei, V., & Bentler, P.M. (2009). A two-stage ML approach to missing data: theory and application to auxiliary
variables. Structural Equation Modeling, 16, 477–497.

Savalei, V., & Falk, C. (in press) Robust two-stage approach outperforms robust FIML with incomplete non-normal data.
Structural Equation Modeling.

Schott, J. (2005). Matrix analysis for statistics (2nd ed.). New York: Wiley.
Tong, X., Zhang, Z., & Yuan, K.-H. (2011, October). Evaluation of test statistics for robust structural equation modeling

with non-normal missing data. Paper presented at the graduate student pre-conference of the annual meeting of the
society of multivariate experimental psychology, Norman, OK.

Yuan, K.-H. (2011). Expectation-robust algorithm and estimating equation for means and covariances with missing data.
Manuscript under review.

Yuan, K.-H., & Bentler, P.M. (1997). Improving parameter tests in covariance structure analysis. Computational Statistics
& Data Analysis, 26, 177–198.

Yuan, K.-H., & Bentler, P.M. (1998). Normal theory based test statistics in structural equation modeling. British Journal
of Mathematical & Statistical Psychology, 51, 289–309.

Yuan, K.-H., & Bentler, P.M. (2000). Three likelihood-based methods for mean and covariance structure analysis with
non-normal missing data. Sociological Methodology, 30, 167–202.

Yuan, K.-H., & Bentler, P.M. (2001). A unified approach to multigroup structural equation modeling with nonstandard
samples. In G.A. Marcoulides & R.E. Schumacker (Eds.), Advanced structural equation modeling: new develop-
ments and techniques (pp. 35–56). Mahwah: Lawrence Erlbaum Associates.

Yuan, K.-H., & Bentler, P.M. (2010). Two simple approximations to the distributions of quadratic forms. British Journal
of Mathematical & Statistical Psychology, 63, 273–291.

Yuan, K.-H., Bentler, P.M., & Chan, W. (2004a). Structural equation modeling with heavy tailed distributions. Psychome-
trika, 69, 421–436.

Yuan, K.-H., & Jennrich, R.I. (1998). Asymptotics of estimating equations under natural conditions. Journal of Multi-
variate Analysis, 65, 245–260.

Yuan, K.-H., Lambert, P.L., & Fouladi, R.T. (2004b). Mardia’s multivariate kurtosis with missing data. Multivariate
Behavioral Research, 39, 413–437.

Yuan, K.-H., & Lu, L. (2008). SEM with missing data and unknown population using two-stage ML: theory and its
application. Multivariate Behavioral Research, 62, 621–652.

Yuan, K.-H., Marshall, L.L., & Bentler, P.M. (2002). A unified approach to exploratory factor analysis with missing data,
non-normal data, and in the presence of outliers. Psychometrika, 67, 95–122.

Yuan, K.-H., Wallentin, F., & Bentler, P.M. (in press) ML versus MI for missing data with violation of distribution
conditions. Sociological Methods & Research.

Zhong, X., & Yuan, K.-H. (2011). Bias and efficiency in structural equation modeling: maximum likelihood versus robust
methods. Multivariate Behavioral Research, 46, 229–265.

Zu, J., & Yuan, K.-H. (2010). Local influence and robust procedures for mediation analysis. Multivariate Behavioral
Research, 45, 1–44.

Manuscript Received: 5 OCT 2011
Final Version Received: 12 DEC 2011
Published Online Date: 22 AUG 2012


	Robust Structural Equation Modeling with Missing Data and Auxiliary Variables
	Abstract
	Introduction
	M-estimates of the Saturated Mean Vector and Covariance Matrix
	Estimation and Inference with the Structural Model
	R package rsem for Robust Estimation and Structural Models
	Robust Analysis of NLSY97 with Growth Curve Models
	Unconditional Latent Growth Curve Model
	Conditional Latent Growth Curve Model

	Discussion and Conclusion
	Acknowledgements
	Appendix A: Mathematical Details for Evaluating the Matrix Upsilon
	Appendix B: R Code for Robust SEM and Its Output
	Appendix C: EQS Code for the Model in Equations (12) and (13)
	Appendix D: EQS Code for Confirmatory Factor Analysis with Four Variables
	Appendix E: EQS Code for the Unconditional Latent Growth Curve Model in Equation (14)
	Appendix F: EQS Code for the Conditional Latent Growth Curve Model in Equations (15) and (16)
	References


