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Abstract
Despite the widespread popularity of growth curve analysis, few studies have in-
vestigated robust growth curve models. In this paper, the t distribution is applied
to model heavy-tailed data and contaminated normal data with outliers for growth
curve analysis. The derived robust growth curve models are estimated through
Bayesian methods utilizing data augmentation and Gibbs sampling algorithms.
The analysis of mathematical development data shows that the robust latent ba-
sis growth curve model better describes the mathematical growth trajectory than
the corresponding normal growth curve model and can reveal the individual dif-
ferences in mathematical development. Simulation studies further confirm that the
robust growth curve models significantly outperform the normal growth curve mod-
els for both heavy-tailed t data and normal data with outliers but lose only slight
efficiency for normal data. It appears convincing to replace the normal distribu-
tion with the t distribution for growth curve analysis. Three information criteria
are evaluated for model selection. Online software is also provided for conducting
robust analysis discussed in this study.
Keywords: Bayesian inference, robust growth curve models, t distribution, model
comparison, mathematical development

Introduction

The need for analysis of change and individual differences in change has advanced the development
and application of growth curve models in behavioral and social sciences (e.g., McArdle, 1988; Meredith &
Tisak, 1990). Statistical inference for growth curve modeling is typically based on the normal distribution
(univariate or multivariate) that is unfortunately vulnerable to longer-than-normal tails or outliers (e.g., Pan
& Fang, 2002). Failing to account for the longer-than-normal tails or outliers in data may result in unreli-
able parameter estimates, incorrect standard errors and confidence intervals, and misleading statistical tests
and inference (Maronna et al., 2006; Yuan et al., 2004; Zu & Yuan, 2010). Some convenient (or conven-
tional) methods, for example, simply deleting outliers, often lead to other problems such as under-estimated
standard errors and reduced efficiency (e.g., Lange et al., 1989; Yuan & Bentler, 2002).

Robust approaches have been developed to produce reliable parameter estimates, and associated tests
and confidence intervals when the statistical assumptions on data distributions are violated. The majority of
robust approaches has occurred in the past half century following the fundamental work by Tukey (Tukey,
1962), Huber (Huber, 1981), and Hampel (Hampel et al., 1986). The main theme of robust methods is to
downweight the influence of observations that are far away from the majority of the data through carefully
chosen weight functions (e.g., Zhong & Yuan, 2010).
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Despite the widespread popularity of growth curve analysis, studies on robust growth curve models
are still very rare. We are only aware of three studies that directly employed robust methods in growth
curve models. Pendergast & Broffitt (1985) discussed two robust estimators and their asymptotic properties
for growth curve models. Singer & Sen (1986) proposed an M-method to obtain the parameter estimates
for growth curve models by transforming them into standard multivariate liner models. Silvapulle (1992)
further extended the M-method to allow asymmetric measurement errors for growth curve analysis.

Considering that growth curve analysis can also be conducted in the framework of mixed-effects
modeling, latent variable modeling, and multilevel modeling, it is worth mentioning the robust literature
in these areas. For example, Gill (2000) and Yau & Kuk (2002) developed robust methods for linear and
generalized linear mixed-effects models (see also, Lachos et al., 2009; Pinheiro et al., 2001; Song et al.,
2007). Lee & Xia (2006, 2008); Yuan & Bentler (1998) and Yuan et al. (2000) developed robust methods
for linear and nonlinear structural equation models with missing data. Yeap & Davidian (2001) developed
robust methods for hierarchical nonlinear models (see also, Rachman-Moore & Wolfe, 1984).

However, the above robust methods developed for both growth curve models and other related models
have not been widely adopted in growth curve analysis of longitudinal data. We believe that there are at least
three reasons for the lack of enthusiasm in the use of robust methods for growth curve analysis. First, the
M-methods used in robust growth curve models proposed in Pendergast & Broffitt (1985), Silvapulle (1992),
and Singer & Sen (1986) are nonparametric and not widely used. Second, The parametric robust methods
developed for mix-effects models and latent variable models based on t distributions or contaminated normal
distributions have hardly been applied to growth curve analysis directly (e.g., Pinheiro et al., 2001; Song et
al., 2007). Third, there still lacks easy-to-use software to carry out robust growth curve analysis. To advance
the application of robust growth curve analysis, we suggest the use of a parametric robust method based on
Student’s t distribution and provide software to carry out the analysis.

Robust methods based on Student’s t distribution

If a vector y with p variables follows a multivariate t distribution with mean vector µ, scale matrix
Σ, and degrees of freedom k, denoted by MTp(µ,Σ, k), its density function can be written as

p(y) =
Γ[(k + p)/2]

Γ(k/2)kp/2πp/2|Σ|1/2
[1 +

(y − µ)′Σ−1(y − µ)

k
]−

k+p
2 . (1)

The t distribution has longer tails than the normal distribution and is more robust to outliers than the nor-
mal distribution (e.g., Lange et al., 1989). As the degrees of freedom k goes to infinity, the t distribution
approaches the normal distribution. For a univariate t distribution, its kurtosis, if existing, is larger than 3,
the kurtosis of the normal distribution.

To demonstrate why t distributions are useful for robust analysis, consider a univariate t variable
yi, i = 1, . . . , n with unknown mean µ, known scale Σ = 1 and known degrees of freedom k. To estimate
µ through maximum likelihood method, we solve the equation with the estimate µ̂,

n∑
i=1

yi − µ̂
k + (yi − µ̂)2

=

n∑
i=1

ψ(yi) = 0. (2)

Note that if (yi− µ̂) is large, indicating outlying observations, the contribution of yi to the estimation of µ is
small. Especially, when (yi− µ̂) goes to infinity, ψ(yi) = 0. Thus, using t distributions, we can downweight
outliers or data on the tails and achieve robust results.

The wide adoption of t distributions in robust statistical modeling has been advanced by Lange et al.
(1989) although their earlier applications can be seen in the literature (e.g., Hampel et al., 1986; Little, 1988;
Sutradhar & Ali, 1986). Recently, t distributions have been applied in more complex robust data analysis.
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For example, Lee & Xia (2006, 2008) applied t distributions in robust structural equation models. Pinheiro
et al. (2001) discussed the use of t distributions for linear mixed-effects models (see also, Song et al., 2007).
Wang et al. (2004) applied t distributions for robust mixture modeling (see also Shoham, 2002). Although
maximum likelihood methods are most widely used, Bayesian methods have also been applied to parameter
estimation in robust models (e.g., Lange et al., 1989; Lee & Xia, 2008; Liu, 1996; Song et al., 2007).

There are many advantages in using t distributions for robust data analysis (e.g., Lange et al., 1989).
First, t distributions have parametric forms and statistical inference can be carried out relatively easily
through both maximum likelihood methods and Bayesian methods. Second, computation based on t dis-
tributions is often relatively easier than using other robust techniques. Third, the degrees of freedom of t
distributions controls the weight of outliers and can be either set at an a priori value or estimated. Fourth,
robust methods based on t distributions are easy to understand and can intuitively be considered as natural
extensions of the corresponding normal distribution based methods for heavy-tailed data.

In this study, we form a set of robust growth curve models based on t distributions. In the following,
we first present a general form of robust growth curve models and illustrate it through several specific robust
growth curve models. Then, we discuss how to estimate robust growth curve models through Bayesian
methods. After that, we demonstrate the application of robust growth curve models through the analysis of
a set of mathematical development data from the National Longitudinal Survey of Youth. The performance
of robust growth curve models is then evaluated through carefully designed simulation studies. Simulation
studies are also used to evaluate the performance of several information criteria in model selection. Finally,
guidelines on the application of robust growth curve models and software implementation are discussed.

Robust Growth Curve Models and Bayesian Estimation

Let yi = (yi1, . . . , yiT )′ be a T × 1 random vector and yij be an observation for individual i at time
j (i = 1, . . . , N ; j = 1, . . . , T ). Here N is the sample size and T is the total number of measurement
occasions. A general form of growth curve models can be expressed as

yi = Ληi + ei (3)

where Λ is a T × q factor loading matrix determining the growth trajectory, ηi is a q × 1 random vector,
and ei is a vector of residuals or measurement errors. ηi are often called random effects because they are
different for each individual. The means of ηi are fixed effects so that

ηi = β + εi (4)

where εi follows a q-variate normal distribution as εi ∼ MNq(0,Ψ). β is a q × 1 vector of fixed-effects
parameters. We useMN to denote a multivariate normal distribution and the subscript q to denote its dimen-
sion. For traditional growth curve models, ei is assumed to be normally distributed as ei ∼ MNT (0,Φ).
We refer to the models based on normal errors as normal growth curve models. In order to deal with long-
tailness or outliers in the data, we model the error term with the multivariate t distribution so that

ei ∼MTT (0,Φ, k). (5)

We then refer to the resulting models as the robust growth curve models. As for normal growth curve
models, the error structure can be simplified to Φ = IT×Tσ

2
e where σ2e is an unknown scale parameter. With

the increase of k, the multivariate t distribution approaches a multivariate normal distribution and therefore
the robust growth curve models become the normal growth curve models.
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Special robust growth curve models can be derived from the above general form. For example, if

Λ =


1 0
1 1/(T − 1)
...

...
1 (j − 1)/(T − 1)
...

...
1 1

 ,ηi =
[
Li
Si

]
,β =

[
βL
βS

]
,Ψ =

[
σ2L σLS
σLS σ2S

]
, (6)

the model represents a robust linear growth curve model with random initial level (intercept) Li and random
slope (rate of change) Si. βL and βS are the average intercept and slope across all individuals, respectively.
σ2L is the variability around the mean intercept and represents inter-individual differences in the latent initial
level and σ2S represents the variability, or individual differences around the mean slope. σLS represents the
covariance between the intercept and slope.

If in the robust linear growth curve model the factor loading matrix is replaced by

Λ =


1 0
1 A[2]
...

...
1 A[j]
...

...
1 1

 (7)

where A[j], j = 2, . . . , T − 1, are parameters to be estimated freely, the resulting model is the robust latent
basis growth curve model. The robust linear growth curve model can be applied if the growth trajectory
is linear. The robust latent basis growth curve model, on the other hand, can fit the nonlinear growth
trajectories. As a special case, when A[j] = (j − 1)/(T − 1), the robust latent basis growth curve model
reduces to the robust linear growth curve model. Note that in the robust latent basis growth curve model, βS
is the total change from the first measurement occasion to the last one and σ2S characterizes the individual
differences in the total change.

A trivial case is when

Λ = [1, 1, . . . , 1]′ ,ηi = Li,β = βL,Ψ = σ2L. (8)

This is a robust growth curve model with intercept only and can be referred to as robust no growth model
following from the normal no growth curve model. The robust no growth model is useful for the analysis of
repeated measures data with individual differences in levels but without apparent individual change.

To estimate the robust growth curve models, we use Bayesian methods. The use of Bayesian meth-
ods for complex data analysis has been made popular by Lee and colleagues (e.g., Lee, 2007; Lee & Shi,
2000; Lee & Song, 2008; Lee & Xia, 2008). Zhang et al. (2007) also applied Bayesian methods to growth
curve modeling. The basic idea of Bayesian methods is to obtain the posterior distributions of model pa-
rameters from the likelihood function and the prior distributions. Because the multivariate t distribution
can be viewed as a multivariate normal distribution with variance weighted by a Gamma distribution, the
data augmentation method is used here to simplify the posterior distribution. Specifically, a Gamma ran-
dom variable w is augmented with a multivariate normal random variable because if wi ∼ G(k2 ,

k
2 ) and

yi|wi,ηi ∼ MNT (Ληi,Φ/wi), then yi ∼ MTT (Ληi,Φ, k), where G denotes the Gamma density func-
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tion (Press, 1972). The joint distribution of yi, ηi, and wi is

p(yi,ηi, wi|k,Φ,Λ,Ψ, β) = p(ηi|Ψ, β)p(yi|ηi, wi,Φ,Λ)p(wi|k) (9)

= (2π)−q/2|Ψ|−1/2 exp

[
−1

2
(ηi − β)′Ψ−1(ηi − β)

]
×(2π)−T/2

∣∣∣∣Φwi
∣∣∣∣−1/2 exp

[
−wi

2
(yi −Ληi)

′Φ−1(yi −Ληi)
]

×wk/2−1i exp(− wi
k/2

)
1

Γ(k/2)(k/2)k/2
.

Thus, the likelihood function for the robust growth curve model is

L =
N∏
i=1

p(yi,ηi, wi|k,Φ,Λ,Ψ,β) (10)

∝ |Ψ|−N/2 exp

[
−1

2

N∑
i=1

(ηi − β)′Ψ−1(ηi − β)

]

×
N∏
i=1

w
T/2
i |Φ|−N/2 exp

[
−

N∑
i=1

wi
2

(yi −Ληi)
′Φ−1(yi −Ληi)

]
.

×(

N∏
i=1

wi)
k/2−1 exp

(
−
∑N

i=1wi
k/2

)[
Γ(k/2)−N

]
(k/2)−Nk/2

The unknown parameters in the robust growth curve models include β, Ψ, Φ, k, and the possible
unknown elements in Λ such asA[j], j = 2, . . . , T−1 in the robust latent basis model. Let p(β,Λ,Ψ,Φ, k)
denote the joint prior distribution of these parameters. The joint posterior distribution of model parameters
is

p(β,Λ,Ψ,Φ, k|yi) ∝
ˆ ˆ

p(β,Λ,Ψ,Φ, k)× Ldηdw. (11)

Generally speaking, the integral above is difficult to evaluate. To circumvent the difficulty, Markov chain
Monte Carlo (MCMC) methods can be applied (for a comprehensive discussion of MCMC methods, see
Robert & Casella, 2004). The conditional posterior distribution p1|2 for the model parameters,

p1|2 = p(β,Λ,Ψ,Φ, k|yi,ηi, wi) ∝ p(β,Λ,Ψ,Φ, k)× L, (12)

and the conditional posterior distribution p2|1 for the auxiliary variables including latent variables,

p2|1 = p(ηi, wi|yi,β,Λ,Ψ,Φ, k) ∝ L (13)

are often relatively easy to obtain. By iteratively drawing samples from p1|2 and p2|1, we can obtain the em-
pirical marginal distributions of the model parameters and form parameter estimates through their posterior
means.

One way to construct the joint prior distribution is to use the independent priors for each (set of)
parameter. In particular, for our model,

p(β,Λ,Ψ,Φ, k) = p(β)p(Λ)p(Ψ)p(Φ)p(k). (14)

For robust growth curve models, the individual conditional posterior distribution for model parameters
and auxiliary variables can often be obtained that include p(β|·), p(Λ|·), p(Ψ|·), p(Φ|·), p(k|·), p(ηi|·), and
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p(wi|·), where · represents conditional arguments. With the resulting conditional posterior distributions,
Gibbs sampling can be used to generate Markov chains for model parameters and latent variables and con-
struct parameter estimates based on posterior means (e.g., Robert & Casella, 2004). In the appendix, we
give the prior and posterior distributions for the robust growth curve models. The Gibbs sampling algorithm
is also outlined.

Model comparisons

For the analysis of empirical data, deviance information criterion (DIC, Spiegelhalter et al., 2002)
can be used to compare and select models, for example, among robust no growth models, robust linear
growth models and robust latent basis growth models. DIC is a widely used criterion for model selection in
the Bayesian framework. DIC is defined as a Bayesian measure of the goodness of model fit with a penalty
of model complexity,

DIC = D(Θ) + pD = D(Θ) + 2pD, (15)

where Θ represents a vector of all the unknown parameters in the model, D(Θ) is the posterior mean of
-2(LogLikehood function) and D(Θ) is the value of -2(LogLikehood function) calculated at the posterior
mean of Θ. The complexity measure, pD, is defined as the difference between the posterior mean of de-
viance (D(Θ)) and the deviance evaluated at the posterior mean of the parameters (D(Θ)). In other words,

pD = D(Θ)−D(Θ). (16)

The model with the minimum DIC will make the best short-term predictions and thus indicates the best
model among evaluated ones (Spiegelhalter et al., 2002).

In addition to DIC, we also used two other model comparison criteria - the extended BIC (EBIC) and
the extended AIC (EAIC) (see discussion by Brooks in Spiegelhalter et al., 2002). The EBIC is calculated
by

EBIC = D(Θ) + logN × p (17)

and the EAIC is calculated by
EAIC = D(Θ) + 2× p (18)

where N is the sample size and p is the number of unknown random-effects and fixed-effects parameters in
the robust models. For both EBIC and EAIC, a smaller value indicates a better fit.

An Example on Mathematical Development Analysis

To demonstrate the application of the robust growth curve models using t distributions, we analyze
a set of data from the National Longitudinal Survey of Youth 1997 Cohort. A sample of N = 310 school
children were administered the Peabody Individual Achievement Test (PIAT) mathematics subtest yearly
from grade 7 to grade 11. The boxplots for the PIAT math at all grades are given in Figure 1. From the
boxplots, there seems to be outliers at each grade. Note that although the data appear to skew to the left from
the boxplots, the skewness from all grades is not statistically different from 0 with the maximum negative
skewness 0.127 at the 10th grade when outliers identified by the boxplots are removed. The kurtoses range
from 3.13 to 4.30 for the observed data from grade 7 to grade 11, and the Anscombe-Glynn test (Anscombe
& Glynn, 1983) shows that the kurtoses at grades 8, 9, and 11 are significantly larger than 3, the kurtosis of
the normal distribution. Both the boxplots and the large kurtoses suggest that robust growth curve models
based on t distribution could be more appropriate than normal growth curve models.

To select an appropriate model to analyze mathematical development, we fitted three robust growth
curve models, including the robust no growth model, the robust linear growth curve model, and the robust
latent basis growth curve model, to the data. The following priors are specified in these models: p(β) =
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Figure 1 Boxplots of Peabody Individual Achievement Test (PIAT) math data

Table 1 Anscombe-Glynn test of kurtosis of math data at each grade
Grade Mean Standard deviation Kurtosis Anscombe-Glynn test (p-value)

7 6.08 1.53 3.13 .257
8 6.28 1.80 4.21 .001
9 6.77 1.70 3.66 .021
10 7.06 1.73 3.48 .055
11 7.05 1.77 4.30 .001

MN(0d×1, Id×d × 106), p(Ψ) = IW (d, Id×d), Φ = IT×Tσ
2
e and p(σ2e) = IG(.001, .001), and p(k) =

U(0, 100), where MN , IG, IW , and U denote the density functions for multivariate normal distribution,
inverse Gamma distribution, inverse Wishart distribution, and uniform distribution, respectively. For the
intercept only model, d = 1; and for the robust linear and latent basis growth curve models, d = 2.
Furthermore, for the robust latent basis model, the prior for the unknown factor loadings is set as A[2 :
T − 1]′ = MN(0(T−2)×1, I(T−2)×(T−2) × 106). Those priors are usually considered as uninformative
priors in the Bayesian literature (Congdon, 2003).

For each fitted model, the convergence of the Markov chain for each parameter was diagnosed both
visually by inspecting the history plot of each parameter and statistically based on the Geweke test (Geweke,
1992). We first visually checked the history plot of each parameter to identify the burn-in period. For
example, the history plots of the robust latent basis growth curve model parameters are presented in Figure
2. The history plots indicate that the Markov chains for all parameters seemed to converge after a few
hundred of iterations. We then threw away the first 1000 iterations and further tested the convergence of
each Markov chain based on the Geweke statistics. The Geweke statistics for the parameters in Figure 2
are summarized in Table 3. All Geweke statistics are smaller than 2 and suggest the convergence of the
Markov chains. After convergence, in order to control Monte Carlo error, we generated the Markov chains
long enough so that for all parameters, the Monte Carlo errors are smaller than 5% of their corresponding
standard deviations, which indicates that the parameter estimates are accurate. After observing convergence
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and controlling Monte Carlo error, we then constructed model parameter estimates and fit indices for each
model.

After convergence, DIC and its components, EBIC and EAIC for each model were obtained and
summarized in Table 2. Based on D(Θ), the deviances became smaller from the no growth model to
the latent basis growth curve model. However, at the same time, the models became more complex with
increasing pD. Overall, the robust latent basis growth curve model had the smallest DIC (3898), EBIC
(2814), and EAIC (2777), and thus the robust latent basis growth curve model was selected as the best fit
model.

Table 2 Comparisons of models using DIC, EBIC, & EAIC

Model D(Θ) D(Θ) pD DIC p EBIC EAIC
No growth 3965 3522 443 4408 4 3545 3530

Linear 3374 2816 558 3932 7 2856 2830
Latent basis 3327 2757 571 3898 10 2814 2777

The parameter estimates for the robust latent basis growth curve model are provided in Table 3.
The estimated degrees of freedom for t distributed measurement errors is 2.919. The small degrees of
freedom indicates that modeling the errors as normally distributed may not be sufficient. For the purpose of
comparison, we also fit the normal latent basis growth curve model to the data using SAS PROC NLMIXED.
Comparing the parameter estimates obtained using the normal distribution with those using the t distribution,
the fixed-effects parameter estimates for the initial level and rate of growth are very close. However, the
estimate for σ2S , the variability of slope, from the robust latent basis growth curve model is substantially
different from that from the normal latent basis growth curve model. Especially, if one conducts a z-test
for the significance of the individual differences of rates of growth on σ2S , it is significant for the robust
model but insignificant for the normal model. Furthermore, the standard errors for the robust model are all
smaller than the counterparts of the normal model. Based on our simulation studies followed immediately,
the results from the robust model should be trusted.

Simulation Studies

We have shown how to apply the robust growth curve models in real data analysis. In this section,
we first evaluate the performance of the robust growth curve models using the t distribution through three
simulation studies and then evaluate the performance of deviance information criteria for model selection
in the fourth simulation study. In the first simulation, we investigate whether the model parameters can be
recovered in the robust growth curve models when the data are simulated from the robust models. In the
second simulation, we investigate whether the robust growth curve models can be used to analyze normal
data that are generated from the normal growth curve models. In the third simulation, we evaluate the
performance of the robust growth curve models when the data are contaminated normal with outliers. In
summary, we want to investigate whether the robust growth curve models can deal with heavy-tailed data,
normal data, and normal data with outliers. In these three simulations, the focus is on a robust latent basis
growth curve model. In the fourth simulation study, we investigate whether the use of DIC, EBIC, and EAIC
can select correct growth curve models.

We first discuss the design of the first three simulation studies. The population parameters of the
robust latent basis growth curve model in the simulation are given by
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Figure 2 History plots of robust latent basis growth curve model parameters. The plots indicate that the Markov chains
converged rapidly.
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Table 3 Parameter estimates for the PIAT math data using robust and normal latent basis growth curve models
Parameter Estimate sd Est/sd MC_error/sd Geweke

A[2] 0.348 0.049 7.115 1.033% -0.691
A[3] 0.695 0.050 14.001 0.994% -0.391
A[4] 0.929 0.051 18.176 1.109% -0.545
βL 6.036 0.090 67.126 0.832% -0.330

Robust model βS 1.071 0.071 15.029 1.462% 0.158
σ2L 1.822 0.188 9.691 0.929% 0.469
σ2S 0.314 0.096 3.259 2.329% 0.445
σLS -0.030 0.096 -0.310 1.709% 0.823
σ2e 0.406 0.039 10.313 1.818% -0.847
k 2.919 0.381 7.663 1.429% -0.988

A[2] 0.222 0.079 2.811 - -
A[3] 0.69 0.073 9.4 - -
A[4] 1.009 0.084 11.973 - -
βL 6.043 0.098 61.436 - -

Normal model βS 1.009 0.091 11.129 - -
σ2L 1.817 0.206 8.84 - -
σ2S 0.251 0.145 1.73 - -
σLS -0.032 0.131 -0.244 - -
σ2e 1.007 0.05 20.007 - -

Note. sd: posterior standard deviation; Est/sd is the ratio of parameter estimate and its standard deviation;
MC_error/sd is the ratio of the Monte Carlo error and standard deviation; Geweke: Geweke statistic.

Λ =


1 0
1 1/(T − 1)
1 2/(T − 1)
...

...
1 1

 ,ηi =
[
Li
Si

]
,β =

[
βL
βS

]
=
[

6
1

]
,Ψ =

[
σ2L σLS
σLS σ2S

]
=
[

2 0
0 .5

]
. (19)

A total of T occasions of data are generated for each individual. Based on Λ, the simulated data have a linear
trajectory and thus the deviation from linear can be easily observed. Furthermore, to simulate heavy-tailed
data, we generate ei from the multivariate t distribution MTT (0, IT×Tσ

2
e , k) with k = 3 and σ2e = 0.5.

To simulate normal data, we generate ei from a multivariate normal distribution MNT (0, IT×Tσ
2
e) with

σ2e = 1.5. In the third simulation, to generate data with outliers, we randomly select 1% samples from
the normal data and replace them with random values about 3 standard deviations away from the mean.
For convenience, we call the three types of data t data, normal data, and outlier data, respectively. Note
that the population parameters in the simulation are similar to those from the empirical data analysis in the
previous section except for the basis coefficients. We vary the sample size in the simulation with N =
100, 200, 300, 400, and 500 and the number of measurement occasions with T = 4 and T = 5.

For each simulation study, a total of 1000 data sets are generated and analyzed. Let θ denote a
parameter and also its population value in the simulation, and let θ̂r, r = 1, . . . , 1000 denote its estimates
from the rth simulation replication. Furthermore, let ŝr denote the posterior standard deviation of θ̂r, and
let l̂r and ûr denote the lower and upper limits of the 95% credible interval for θ constructed based on the
posterior standard deviation and normal assumption in the rth replication, respectively.1 For each simulation
study, six statistics will be reported.

The first statistic is the parameter estimate that is calculated as the average of parameter estimates of

1The posterior standard deviation is analogical to the frequentist standard error and the posterior credible interval, also called
credible interval or Bayesian confidence interval, is analogical to the frequentist confidence interval. For the credible interval,
[l̂r, ûr] = [θ̂r + Φ−1(0.025) × ŝr, θ̂r + Φ−1(0.975) × ŝr] where Φ is the normal distribution function.
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1000 simulation replications

Estimate =
1

1000

1000∑
r=1

θ̂r. (20)

The second one is the relative bias

Bias =

{
100×

[
Estimate

θ − 1
]

θ 6= 0

100× Estimate θ = 0
. (21)

Note that the relative bias is rescaled by multiplying 100. Smaller relative bias indicates that the point
estimate is less biased and thus more accurate. The third statistic is the empirical standard deviation (ESD),

ESD =
1

999

1000∑
r=1

(θ̂r − Estimate)2. (22)

The fourth one is the average posterior standard deviation (ASD),

ASD =
1

1000

1000∑
r=1

ŝr. (23)

If the standard deviation are precisely estimated, ASD should be very close to ESD. The fifth statistic is the
coverage probability (CVG) of the 95% credible interval of each parameter. The CVG is calculated as

CVG =
#(l̂r < θ < ûr)

1000
(24)

where #(l̂r < θ < ûr) is the total number of replications with credible intervals covering the true parameter
θ. Good 95% credible intervals should give coverage probabilities close to 0.95. The sixth one is statistical
power or Type I error that is calculated by

power/Type I error =
#(l̂r > 0) + #(ûr < 0)

1000
(25)

where #(l̂i > 0) is the total number of replications with the lower limits of credible intervals larger than 0
and #(ûr < 0) is the total number of replications with the upper limits smaller than 0. If θ = 0, it is Type I
error and otherwise statistical power.

For the fourth simulation, we focus on whether we can select the correct model from the no growth
model, the linear model and the latent basis model based on DIC, EBIC, and EAIC. In the first condition
of this simulation study, we generate 1000 sets of data from a robust latent basis growth curve model with
A = [0, .35, .7, .9, 1]. In the second condition, we generate 1000 sets of data from a robust linear growth
curve model. Then, under each condition, we fit the no growth, linear growth, and latent basis growth curve
models to the data and calculate their DIC, EBIC, and EAIC. The model with the smallest DIC, EBIC, and
EAIC is retained as the best fit model for the analysis of each generated data set.

Simulation study 1: Analysis of t data

In this simulation study, we evaluate the performance of the robust latent basis growth curve model in
analyzing t data. The results for this simulation are given in Table 4.2 First, the relative bias for parameter

2For the sake of space, only results for T = 5 and N = 100, 200, 300, and 400 are reported here. Results for other conditions
are similar and available on request.
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estimates is smaller than or around 5% except for k or when the sample size is small (e.g., N = 100).
Although the degrees of freedom cannot be estimated accurately with a small sample size (N < 300), the
growth curve related parameter estimates are accurate even with a small sample size 100. Second, the aver-
age posterior standard deviation (ASD) is close to the empirical standard deviation (ESD) indicating that the
standard deviation estimates are also accurate. Third, the coverage probability for the 95% credible inter-
vals is close to the nominal level 95% with almost all falling in the interval of [0.936, 0.964]. Furthermore,
with the increase of sample sizes, both parameter estimate biases and posterior standard deviations become
smaller.

Table 4 Analysis of t data using the robust Bayesian method
True Estimate Bias(%) ESD ASD CVG Power/Type I

A[2] 0.25 0.239 -4.335 0.105 0.107 0.961 0.642
A[3] 0.5 0.501 0.143 0.095 0.101 0.968 0.991
A[4] 0.75 0.763 1.758 0.109 0.107 0.958 0.999
βL 6 6.017 0.286 0.166 0.170 0.956 1.000

100 βS 1 0.965 -3.539 0.137 0.142 0.948 1.000
σ2L 2 2.124 6.178 0.361 0.387 0.968 1.000
σ2S 0.5 0.526 5.199 0.244 0.259 0.927 0.446
σLS 0 -0.014 -1.401 0.208 0.222 0.966 0.034
σ2e 0.5 0.528 5.533 0.079 0.078 0.943 1.000
k 3 3.563 18.774 1.244 0.903 0.982 0.990
A[2] 0.25 0.245 -1.902 0.069 0.071 0.954 0.901
A[3] 0.5 0.501 0.257 0.066 0.068 0.957 1.000
A[4] 0.75 0.757 0.899 0.071 0.071 0.956 1.000
βL 6 6.006 0.101 0.115 0.118 0.967 1.000

200 βS 1 0.984 -1.555 0.097 0.099 0.950 1.000
σ2L 2 2.059 2.963 0.251 0.262 0.960 1.000
σ2S 0.5 0.505 0.907 0.183 0.183 0.924 0.844
σLS 0 -0.003 -0.295 0.152 0.155 0.952 0.048
σ2e 0.5 0.513 2.636 0.055 0.054 0.949 1.000
k 3 3.218 7.280 0.544 0.494 0.972 1.000
A[2] 0.25 0.245 -1.802 0.058 0.057 0.952 0.979
A[3] 0.5 0.501 0.289 0.053 0.054 0.950 1.000
A[4] 0.75 0.754 0.516 0.056 0.057 0.953 1.000
βL 6 6.003 0.053 0.095 0.096 0.952 1.000

300 βS 1 0.990 -1.034 0.081 0.080 0.948 1.000
σ2L 2 2.035 1.733 0.205 0.211 0.957 1.000
σ2S 0.5 0.498 -0.326 0.151 0.148 0.933 0.961
σLS 0 0.001 0.135 0.125 0.126 0.949 0.051
σ2e 0.5 0.511 2.204 0.044 0.044 0.954 1.000
k 3 3.154 5.138 0.420 0.387 0.960 1.000
A[2] 0.25 0.247 -1.215 0.049 0.049 0.954 0.998
A[3] 0.5 0.501 0.130 0.047 0.047 0.950 1.000
A[4] 0.75 0.753 0.389 0.048 0.049 0.954 1.000
βL 6 6.001 0.018 0.082 0.083 0.953 1.000

400 βS 1 0.993 -0.731 0.069 0.069 0.954 1.000
σ2L 2 2.031 1.548 0.180 0.182 0.951 1.000
σ2S 0.5 0.503 0.615 0.129 0.128 0.940 0.992
σLS 0 -0.003 -0.287 0.109 0.109 0.951 0.049
σ2e 0.5 0.507 1.416 0.038 0.038 0.952 1.000
k 3 3.116 3.856 0.343 0.328 0.954 1.000

For the purpose of comparison, we also analyzed the t data with the normal latent basis growth curve
model and summarized the results in Table 5. The results show that the relative biases of parameter estimates
are large even with a sample size of 400. Especially, σ2S is over-estimated more than 40% and σLS is under-
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Table 5 Analysis of t-data using normal model
True Estimate Bias(%) ESD ASD CVG Power/Type I

A[2] 0.25 0.314 25.621 0.778 0.228 0.793 0.535
A[3] 0.5 0.598 19.692 1.024 0.302 0.817 0.877
A[4] 0.75 0.877 16.872 1.105 0.380 0.776 0.955
βL 6 6.048 0.808 0.208 0.183 0.910 1.000

100 βS 1 0.902 -9.837 0.278 0.181 0.847 0.944
σ2L 2 2.170 8.495 1.379 0.436 0.865 0.986
σ2S 0.5 0.927 85.416 2.855 0.481 0.625 0.511
σLS 0 -0.254 -25.405 1.527 0.344 0.725 0.275
σ2e - 1.344 - 0.765 0.114 - -
A[2] 0.25 0.262 4.753 0.511 0.148 0.808 0.671
A[3] 0.5 0.542 8.500 0.395 0.118 0.815 0.959
A[4] 0.75 0.788 5.123 0.423 0.130 0.776 0.984
βL 6 6.031 0.511 0.154 0.130 0.914 1.000

200 βS 1 0.938 -6.205 0.216 0.130 0.874 0.974
σ2L 2 2.102 5.123 0.790 0.303 0.830 0.993
σ2S 0.5 0.763 52.679 1.680 0.342 0.609 0.586
σLS 0 -0.149 -14.932 0.934 0.243 0.696 0.304
σ2e - 1.382 - 0.453 0.082 - -
A[2] 0.25 0.255 1.860 0.224 0.086 0.817 0.792
A[3] 0.5 0.511 2.210 0.262 0.084 0.814 0.981
A[4] 0.75 0.767 2.270 0.256 0.086 0.807 0.997
βL 6 6.019 0.314 0.129 0.106 0.903 1.000

300 βS 1 0.959 -4.088 0.171 0.107 0.878 0.993
σ2L 2 2.073 3.645 0.603 0.245 0.826 0.996
σ2S 0.5 0.711 42.218 1.284 0.278 0.592 0.638
σLS 0 -0.112 -11.166 0.703 0.197 0.692 0.308
σ2e - 1.397 - 0.404 0.067 - -
A[2] 0.25 0.208 -16.845 0.970 0.213 0.841 0.870
A[3] 0.5 0.500 -0.099 0.777 0.172 0.818 0.985
A[4] 0.75 0.740 -1.332 0.653 0.136 0.814 0.992
βL 6 6.017 0.278 0.117 0.092 0.900 1.000

400 βS 1 0.964 -3.583 0.157 0.092 0.882 0.993
σ2L 2 2.075 3.773 0.577 0.213 0.821 0.997
σ2S 0.5 0.720 43.929 1.212 0.242 0.596 0.701
σLS 0 -0.115 -11.536 0.687 0.172 0.699 0.301
σ2e - 1.410 - 0.407 0.059 - -

estimated more than 10% even for N = 400. Furthermore, these biases do not seem to monotonously
decrease with the increase of sample sizes. Comparing empirical standard deviation (ESD) and the average
posterior standard deviation (ASD), the posterior standard deviation are uniformly under-estimated more
than 100% for most parameters. The standard deviations for the normal model are also consistently larger
than those from the robust model. Furthermore, the coverage probabilities are consistently smaller than the
nominal level 95%. Comparing the power in Table 4 and that in Table 5, the power is consistently smaller
if the t data are analyzed as normal data. At the same time, the Type I error for σLS is over-estimated.
Thus, using the normal model to analyze the t data, one may incorrectly conclude that there is no individual
differences in the slope, and the slope and the initial level are negatively correlated in the growth curve
model.

Overall, the robust latent growth curve model performs very well for the analysis of t data. The
normal latent basis growth curve model , on the other hand, does not seem to work for t data.
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Simulation study 2: Analysis of normal data

In this simulation study, we investigate whether the robust growth curve models can be applied to
analyze normal data. For comparison, the generated normal data are analyzed by both the robust and normal
latent basis growth curve models. The results from the robust model are given in Table 6 and the results for
the normal model are summarized in Table 7.

Overall, it seems that both the robust and normal latent basis growth curve models can estimate model
parameters very well except when the sample size is as small as N = 100. With N = 100, the robust model
has much larger biases than the normal model. For example, the bias for σ2S is about 22% for robust model
but is only about -6% for the normal model. When the sample size is 200 or bigger, the parameter biases
are smaller than 5% for both robust and normal models except for A[2] in the robust model; ESD and ASD
are approximately equal; and the coverage probabilities are close to the nominal level 95%. On average,
the normal model has smaller biases, smaller standard deviation estimates and larger power. Overall, the
robust model obtains comparable results as the normal model for normal data analysis. Although the use
of robust model for normal data reduces efficiency, the reduction in efficiency is not big. Practically, if the
estimated degrees of freedom are larger than 30, one would switch to the normal growth curve model. Thus,
the reduction in the efficiency may be avoided.

Simulation study 3: Analysis of normal data with outliers

In this simulation study, we investigate whether the robust growth curve models can be applied to
analyze data with outliers. The results for data analysis using the robust model and the normal model are
given in Table 8 and Table 9, respectively.

When the sample size is 100, neither the robust model nor the normal model seems to work well
although the robust model still outperforms the normal model. For example, the bias for σ2S is about 30%
for the robust model and about 174% for the regular model. When the sample size increases to 200, the
parameter estimates for the robust model are greatly improved but the biases for the normal model are still
very large. For the robust model, only the bias for σ2S is big and the posterior standard deviation estimates
and coverage probabilities perform well in general. On the other hand, both posterior standard deviations
and coverage probabilities are greatly under-estimated for the normal model.

The following discussion focuses on N = 400 when the biases for both models seem to be small
for all parameters except for σ2S . For the robust model, other than the slightly over-estimated σ2S , parameter
estimates, posterior standard deviation estimates, and coverage probabilities appear very good for all model
parameters. However, for the normal model, the parameter estimates for both σ2S and σLS are biased and
the coverage probabilities for most parameters are either over-estimated or under-estimated. The power for
the normal model is also smaller than the robust model. Furthermore, the Type I error for σLS is correct for
the robust model but over-estimated for the normal model. Overall, the robust model performs better than
the normal model to analyze outlier data in this simulation study.

In summary, the robust growth curve model outperform the regular model when data are t distributed
or contaminated with outliers. For the normal data, although the robust model is not as efficient as the
normal model, the reduction in efficiency is generally small.

Simulation study 4: Model selection using DIC, EBIC, and EAIC

In order to evaluate the performance of DIC, EBIC and EAIC in model selection, we first simulated
data from a robust latent basis growth curve model and then fitted robust no growth, linear, and latent basis
models to the data. The number of replications that a model is selected based on the smallest DIC, EBIC,
or EAIC is given in Table 10.3 Overall, with larger sample sizes and longer measurement occasions, the

3In all simulations, the robust no growth curve model has never been selected and thus is excluded in the table for the sake of
space.
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Table 6 Analysis of normal data using the robust Bayesian method
True Estimate Bias(%) ESD ASD CVG Power/Type I

A[2] 0.25 0.221 -11.679 0.189 0.202 0.968 0.328
A[3] 0.5 0.507 1.482 0.191 0.190 0.971 0.828
A[4] 0.75 0.783 4.427 0.185 0.204 0.972 0.971
βL 6 6.037 0.611 0.184 0.191 0.949 1.000
βS 1 0.922 -7.820 0.201 0.193 0.920 0.995
σ2L 2 2.179 8.971 0.411 0.445 0.970 1.000

100 σ2S 0.5 0.610 21.963 0.347 0.397 0.971 0.107
σLS 0 -0.086 -8.628 0.278 0.307 0.964 0.036
σ2e 1.5 1.446 -3.591 0.114 0.125 0.931 1.000
k ∞ 60.623 - 6.534 23.316 - -
A[2] 0.25 0.237 -5.209 0.115 0.115 0.961 0.577
A[3] 0.5 0.504 0.814 0.114 0.110 0.949 0.982
A[4] 0.75 0.766 2.070 0.115 0.115 0.952 1.000
βL 6 6.015 0.245 0.129 0.133 0.955 1.000
βS 1 0.965 -3.505 0.135 0.133 0.938 1.000
σ2L 2 2.085 4.259 0.293 0.302 0.957 1.000

200 σ2S 0.5 0.525 4.919 0.267 0.285 0.939 0.295
σLS 0 -0.032 -3.244 0.203 0.217 0.962 0.038
σ2e 1.5 1.454 -3.041 0.080 0.089 0.933 1.000
k ∞ 64.444 - 6.515 21.584 - -
A[2] 0.25 0.241 -3.435 0.091 0.091 0.960 0.757
A[3] 0.5 0.504 0.745 0.087 0.087 0.955 1.000
A[4] 0.75 0.759 1.158 0.093 0.091 0.960 1.000
βL 6 6.011 0.175 0.105 0.108 0.956 1.000
βS 1 0.976 -2.395 0.108 0.108 0.931 1.000
σ2L 2 2.053 2.630 0.248 0.243 0.952 1.000

300 σ2S 0.5 0.498 -0.446 0.230 0.241 0.959 0.465
σLS 0 -0.013 -1.327 0.168 0.180 0.959 0.041
σ2e 1.5 1.458 -2.785 0.067 0.073 0.918 1.000
k ∞ 67.247 - 6.431 20.262 - -
A[2] 0.25 0.245 -1.930 0.078 0.077 0.964 0.852
A[3] 0.5 0.504 0.773 0.074 0.074 0.959 1.000
A[4] 0.75 0.755 0.698 0.078 0.077 0.950 1.000
βL 6 6.007 0.110 0.090 0.093 0.963 1.000
βS 1 0.984 -1.563 0.093 0.093 0.946 1.000
σ2L 2 2.031 1.549 0.210 0.209 0.945 1.000

400 σ2S 0.5 0.486 -2.818 0.214 0.215 0.948 0.618
σLS 0 -0.004 -0.377 0.154 0.158 0.954 0.046
σ2e 1.5 1.461 -2.581 0.058 0.063 0.909 1.000
k ∞ 69.771 - 6.081 19.229 - -
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Table 7 Analysis of normal data using normal model
True Estimate Bias(%) ESD ASD CVG Power/Type I

A[2] 0.25 0.227 -9.349 0.183 0.164 0.956 0.361
A[3] 0.5 0.498 -0.318 0.167 0.155 0.959 0.874
A[4] 0.75 0.756 0.790 0.174 0.162 0.948 0.991
βL 6 6.009 0.152 0.185 0.185 0.946 1.000

100 βS 1 0.978 -2.248 0.197 0.185 0.933 0.996
σ2L 2 1.979 -1.060 0.417 0.416 0.941 1.000
σ2S 0.5 0.470 -6.037 0.511 0.460 0.912 0.156
σLS 0 0.013 1.282 0.350 0.329 0.932 0.068
σ2e 1.5 1.485 -0.967 0.129 0.124 0.933 1.000
A[2] 0.25 0.238 -4.932 0.110 0.109 0.958 0.606
A[3] 0.5 0.497 -0.512 0.106 0.104 0.959 0.990
A[4] 0.75 0.746 -0.502 0.111 0.109 0.949 1.000
βL 6 6.002 0.038 0.132 0.131 0.949 1.000

200 βS 1 0.990 -0.988 0.135 0.131 0.935 1.000
σ2L 2 1.996 -0.223 0.294 0.295 0.946 1.000
σ2S 0.5 0.488 -2.383 0.335 0.326 0.941 0.289
σLS 0 0.010 0.996 0.236 0.233 0.946 0.054
σ2e 1.5 1.489 -0.714 0.084 0.087 0.952 1.000
A[2] 0.25 0.241 -3.539 0.090 0.088 0.946 0.747
A[3] 0.5 0.499 -0.242 0.084 0.084 0.957 0.999
A[4] 0.75 0.751 0.107 0.088 0.088 0.956 1.000
βL 6 6.003 0.044 0.106 0.107 0.952 1.000

300 βS 1 0.992 -0.830 0.110 0.107 0.941 1.000
σ2L 2 1.999 -0.065 0.236 0.241 0.946 1.000
σ2S 0.5 0.489 -2.271 0.272 0.265 0.937 0.448
σLS 0 0.005 0.536 0.191 0.190 0.950 0.050
σ2e 1.5 1.494 -0.387 0.070 0.071 0.944 1.000
A[2] 0.25 0.244 -2.213 0.077 0.076 0.940 0.869
A[3] 0.5 0.500 -0.059 0.072 0.073 0.944 1.000
A[4] 0.75 0.750 -0.040 0.075 0.076 0.954 1.000
βL 6 6.002 0.038 0.091 0.093 0.952 1.000

400 βS 1 0.994 -0.648 0.096 0.093 0.945 1.000
σ2L 2 2.004 0.184 0.204 0.209 0.947 1.000
σ2S 0.5 0.489 -2.215 0.235 0.230 0.937 0.571
σLS 0 0.004 0.422 0.165 0.165 0.954 0.046
σ2e 1.5 1.496 -0.257 0.061 0.061 0.944 1.000

correct robust latent basis growth curve model is more likely to be selected. In this condition, DIC seems
to perform better than EAIC which, in turn, performs better than EBIC. For example, when N = 300 and
T = 5, DIC can correctly select the robust latent basis model 995 times out of 1,000. However, EAIC and
EBIC only correctly select the model 97.8% and 90.4% of the time, respectively.

Then we simulated data from a linear growth curve model to investigate the performance of DIC,
EBIC, and EAIC. The number of times that a model is selected based on the smallest DIC, EBIC, or EAIC
is given in Table 11. Overall, it seems that EBIC performs better than DIC and EAIC in this condition
especially when T = 5. Furthermore, all three fit indices seem to have the tendency to prefer the more
complex models. The observation is consistent with the existing literature (Spiegelhalter et al., 2002; Zhang
& Nesselroade, 2007).
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Table 8 Analysis of outlier data using the robust Bayesian method
True Estimate Bias(%) ESE ASE CVG Power/Type I

A[2] 0.25 0.206 -17.738 0.255 0.267 0.966 0.264
A[3] 0.5 0.51 2.068 0.241 0.255 0.973 0.712
A[4] 0.75 0.806 7.423 0.279 0.275 0.969 0.915
βL 6 6.046 0.767 0.199 0.203 0.943 1
βS 1 0.905 -9.476 0.229 0.214 0.914 0.973
σ2L 2 2.198 9.922 0.447 0.485 0.978 1

100 σ2S 0.5 0.64 27.969 0.369 0.441 0.975 0.067
σLS 0 -0.101 -10.058 0.297 0.341 0.968 0.032
σ2e - 1.439 - 0.156 0.185 - -
k - 4.761 - 1.671 1.243 - -
A[2] 0.25 0.233 -6.691 0.128 0.129 0.958 0.494
A[3] 0.5 0.505 0.959 0.13 0.123 0.956 0.966
A[4] 0.75 0.768 2.379 0.133 0.129 0.953 1
βL 6 6.02 0.326 0.136 0.141 0.954 1
βS 1 0.959 -4.073 0.15 0.146 0.933 1
σ2L 2 2.094 4.69 0.313 0.327 0.955 1

200 σ2S 0.5 0.552 10.394 0.28 0.315 0.956 0.238
σLS 0 -0.044 -4.389 0.216 0.241 0.959 0.041
σ2e - 1.428 - 0.104 0.13 - -
k - 4.357 - 0.634 0.699 - -
A[2] 0.25 0.238 -4.661 0.1 0.101 0.961 0.67
A[3] 0.5 0.503 0.619 0.097 0.096 0.954 0.997
A[4] 0.75 0.76 1.312 0.105 0.101 0.95 1
βL 6 6.014 0.233 0.109 0.115 0.955 1
βS 1 0.974 -2.594 0.12 0.119 0.945 1
σ2L 2 2.063 3.136 0.266 0.264 0.955 1

300 σ2S 0.5 0.532 6.443 0.253 0.267 0.935 0.437
σLS 0 -0.028 -2.786 0.186 0.199 0.957 0.043
σ2e - 1.425 - 0.086 0.107 - -
k - 4.259 - 0.452 0.547 - -
A[2] 0.25 0.244 -2.349 0.085 0.085 0.961 0.796
A[3] 0.5 0.503 0.659 0.084 0.082 0.957 0.999
A[4] 0.75 0.756 0.83 0.087 0.085 0.95 1
βL 6 6.009 0.142 0.093 0.099 0.969 1
βS 1 0.984 -1.65 0.102 0.102 0.956 1
σ2L 2 2.042 2.084 0.226 0.229 0.957 1

400 σ2S 0.5 0.53 6.027 0.229 0.238 0.936 0.597
σLS 0 -0.024 -2.44 0.166 0.176 0.957 0.043
σ2e - 1.422 - 0.074 0.093 - -
k - 4.226 - 0.322 0.467 - -
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Table 9 Analysis of outlier data using normal model
True Estimate Bias(%) ESE ASE CVG Power/Type I

A[2] 0.25 2.089 735.563 18.043 6.968 0.798 0.410
A[3] 0.5 1.160 131.977 8.283 1.542 0.803 0.713
A[4] 0.75 0.980 30.632 7.102 1.153 0.795 0.862
βL 6 6.183 3.057 0.242 0.217 0.825 1.000

100 βS 1 0.812 -18.769 0.381 0.251 0.791 0.768
σ2L 2 2.288 14.379 1.167 0.610 0.816 0.918
σ2S 0.5 1.368 173.533 1.622 0.645 0.476 0.609
σLS 0 -0.458 -45.800 1.237 0.549 0.756 0.244
σ2e - 2.697 - 0.631 0.217 - -
A[2] 0.25 0.493 97.161 6.261 0.191 0.884 0.482
A[3] 0.5 0.565 13.098 0.295 0.176 0.879 0.915
A[4] 0.75 0.785 4.689 0.622 0.187 0.864 0.990
βL 6 6.127 2.118 0.155 0.157 0.893 1.000

200 βS 1 0.936 -6.362 0.220 0.184 0.916 0.977
σ2L 2 2.116 5.788 0.644 0.425 0.867 0.993
σ2S 0.5 0.880 75.962 0.968 0.467 0.529 0.605
σLS 0 -0.224 -22.382 0.718 0.398 0.795 0.205
σ2e - 2.871 - 0.418 0.163 - -
A[2] 0.25 0.269 7.791 0.132 0.130 0.947 0.538
A[3] 0.5 0.525 4.968 0.128 0.123 0.938 0.988
A[4] 0.75 0.772 2.878 0.153 0.129 0.923 0.999
βL 6 6.120 1.993 0.114 0.128 0.874 1.000

300 βS 1 0.972 -2.760 0.142 0.148 0.958 1.000
σ2L 2 2.044 2.225 0.418 0.334 0.892 1.000
σ2S 0.5 0.681 36.106 0.690 0.400 0.625 0.523
σLS 0 -0.124 -12.360 0.471 0.319 0.845 0.155
σ2e - 2.924 - 0.312 0.136 - -
A[2] 0.25 0.260 3.966 0.098 0.112 0.972 0.656
A[3] 0.5 0.515 2.940 0.091 0.106 0.979 0.999
A[4] 0.75 0.762 1.540 0.108 0.110 0.958 1.000
βL 6 6.120 2.003 0.097 0.111 0.835 1.000

400 βS 1 0.982 -1.832 0.110 0.127 0.974 1.000
σ2L 2 2.021 1.047 0.308 0.284 0.932 1.000
σ2S 0.5 0.565 12.935 0.514 0.361 0.736 0.447
σLS 0 -0.075 -7.452 0.331 0.272 0.888 0.112
σ2e - 2.948 - 0.213 0.119 - -

Discussion

Although growth curve modeling has become popular in analyzing change and individual differences
in change, research on robust growth curve models is still rare. We proposed to model heavy-tailed data
or outliers through the t distribution for growth curve analysis. The derived robust growth curve models
can be estimated through Bayesian methods utilizing data augmentation and Gibbs sampling algorithms.
Selection among different robust growth curve models can be conducted using DIC, EBIC and EAIC. The
analysis of mathematical development data showed that the robust latent basis growth curve model best fit
the growth trajectory and led to different conclusions in terms of individual differences in growth from the
conclusions drawn from the corresponding normal growth curve model. Both the boxplots of data and the
estimated small number of degrees of freedom suggested that the robust growth curve model is necessary for
the analysis of this data set. The simulation studies further confirmed that the robust growth curve models
significantly outperformed the normal growth curve models for both heavy-tailed t data and normal data
with outliers but only lost slight efficiency when data were normally distributed.
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Table 10 Model selected based on DIC, EBIC and EAIC. The robust latent basis growth curve model is the correct
model.

100 200 300 400 500

T=5
DIC Linear 75 13 5 2 0

Latent basis 925 987 995 998 1000
EBIC Linear 342 168 96 50 25

Latent basis 658 832 904 950 975
EAIC Linear 135 50 22 7 4

Latent basis 865 950 978 993 996

T=4
DIC Linear 154 116 80 52 41

Latent basis 846 884 920 948 959
EBIC Linear 481 432 334 273 245

Latent basis 519 568 666 727 755
EAIC Linear 245 157 122 99 82

Latent basis 745 843 878 901 928

Note. Linear: robust linear growth curve model. Latent basis: robust latent basis growth curve model. DIC:
deviance information criterion. EBIC: extended Bayesian information criterion. EAIC: extended Akaike
information criterion.

Table 11 Model selected based on DIC, EBIC and EAIC. The robust linear growth curve model is the correct model.
100 200 300 400 500

T=5
DIC Linear 678 669 678 673 665

Latent basis 322 311 322 327 335
EBIC Linear 889 884 892 909 910

Latent basis 111 116 108 91 90
EAIC Linear 722 699 708 702 697

Latent basis 278 301 292 298 303

T=4
DIC Linear 587 581 579 610 590

Latent basis 413 419 421 390 410
EBIC Linear 816 810 801 821 820

Latent basis 184 190 199 179 180
EAIC Linear 694 651 633 648 634

Latent basis 306 349 367 352 366

Note. Linear: robust linear growth curve model. Latent basis: robust latent basis growth curve model. DIC:
deviance information criterion. EBIC: extended Bayesian information criterion. EAIC: extended Akaike
information criterion.

The finding that the heavy-tailed data affect random-effects parameters but not fixed-effects parame-
ters has important implication in growth curve analysis. Unlike latent variable analysis where the estimated
variances for latent variables are of no direct interests, one of the main purposes of growth curve analysis is
to investigate the individual differences in change or growth based on the testing of variance parameters for
random change. Thus, without dealing with heavy-tailed data, the conclusion from a normal growth curve
analysis can be misleading.

The robust growth curve models discussed in this study are parametric and can be explicitly formed
in probabilistic settings. In general, the robust models and methods based on the t distribution are easier to
understand, estimate, and interpret than M-estimators (Huber, 1981). The use of the t distribution has also
computational simplicity compared to the choice of other distributions such as the contaminated normal
distribution and the slash distribution. It is possible to develop semi-parametric or nonparametric robust
growth curve models in the future.

We have estimated the degrees of freedom k as an unknown parameter in the robust growth curve
model. Alternatively, it can be fixed a priori. k determines how much one plans to downweight the outliers.
If one would downweight more of the outlier, a smaller k can be used. Lange et al. (1989) suggested fixing
k for small data sets and estimating k for large data sets. Venables & Ripley (1999, p121) suggested that
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k = 5 is often a good choice. One advantage to estimate k is that its magnitude provides information on
whether a robust model is necessary. From our experience, if k > 30, it is safe to use a normal model.

Implementation and extensions

To help the adoption of robust growth curve models, online software has been developed us-
ing web programming languages to implement the Bayesian estimation procedure for all models dis-
cussed in this study. The software can be used at any place with Internet connection throught the URL
http://webstats.psychstat.org/semrgcm/. To use the software, one only needs to upload the data set to be
analyzed. The output includes the summary statistics and Anscombe-Glynn kurtosis test, the spaghetti
(longitudinal) plot of data, the boxplot of data, Geweke statistic, history plot and autocorrelation plot for
convergence diagnostics, and Bayesian parameter estimates. Users can specify prior distributions and start-
ing values of model parameters and control the burn-in period and length and thinning of Markov chains.
The software and its manual are freely available at (the link is removed for review purpose). A step-by-step
illustration of the software is given in Appendix B.

In order to clearly show the differences between the robust and normal growth curve models, we have
assumed that the residuals follow a multivariate t distribution and the random coefficients have a multivari-
ate normal distribution. Admittedly, a general robust growth curve model should allow both residuals and
random coefficients to follow t distributions. Therefore, our online software allows the use of any combi-
nation of normal and t distributions for residuals and random coefficients. Several different strategies can
be used to determine the choice of t distributions fore residual and random coefficients. One strategy is
fit growth curves to individuals and then check the distributions of residuals and random coefficients for
long-tailness and outliers. Another strategy is to check the estimated degrees of freedom of t distributions.
A small degrees of freedom indicates the necessity of the use of t distribution. Fit indices DIC, EBIC, and
EAIC can also be used to assist the decision of the choice of t distribution by comparing competing models.

In growth curve analysis, covariates can be used to explain the individual differences in growth pa-
rameters such as initial level and change (McArdle & Nesselroade, 2002). Thus, the software also allows the
inclusion of any number of covariates. Furthermore, in longitudinal data analysis, missing data are almost
inevitable and are a challenge for growth curve modeling. The software deals with missing data in the de-
pendent variable and covariates by sampling them from their posterior distributions. As mentioned earlier,
with a small sample size, the degrees of freedom cannot be estimated accurately. Therefore, the software
allows the supply of a fixed value as the degrees of freedom.

Limitations

Like normal distribution, t distribution is symmetric and can be sensitive to skewed data. Practically,
we found that if the skewness in the data was caused by outliers, the robust growth curve models could
still perform very well. However, if the skewness was because of skewed distributions such as lognormal
distribution and Gamma distribution, the robust growth curve models could break down although they still
worked relatively better than the normal growth curve models. For data with systematical skewness, one may
conduct a transformation to symmetry (Hoaglin et al., 1983) before applying the robust models. Another
possible solution is to use a skew-t distribution (Azzalini & Genton, 2008) to accommodate to skewness in
the data. However, the performance of skew-t distribution in robust growth curve modeling needs further
evaluation.

For robust growth curve model selection, we have used DIC, EAIC, and EBIC. However, caution
should be used when applying those fit indices for model selection. As shown in our simulation, all three
fit indices seem to prefer more complex models. Although DIC is very widely used, it has received many
criticisms since it was proposed (Spiegelhalter et al., 2002). Especially, for models involving random-effects
as in our robust growth curve models, the computation of DIC is still not very clear (Celeux et al., 2006).
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Furthermore, as pointed out by Torre & Douglas (2008), the use of posterior mean in constructing EAIC and
EBIC also needs further justification. Thus, the development of better and sophisticated fit indices should
be carried out in the future.
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Appendix A
Priors and posteriors of robust growth curve models

In this appendix, we first present the prior and posterior distributions of robust growth curve models
and then outline the Gibbs sampling algorithm. In the following, we use MN , IG, IW , and U to de-
note the density function for multivariate normal distribution, inverse Gamma distribution, inverse Wishart
distribution, and uniform distribution, respectively.

Priors

For β, a multivariate normal prior is used

p(β) = MNq(β0,Σ0) = (2π)−q/2|Σ0|−1/2 exp

[
−1

2
(β − β0)

′Σ−10 (β − β0)

]
. (26)

For Ψ, the inverse Wishart prior is used

p(Ψ) = IW (m0, V0) =
|V0|m0/2|Ψ|−

m0+q+1
2 exp

[
−tr(V0Ψ−1)/2

]
2m0q/2Γ(m0/2)

. (27)

For Φ, the inverse Wishart prior is used

p(Φ) = IW (n0,W0) =
|W0|n0/2|Φ|−

n0+T+1
2 exp

[
−tr(W0Φ

−1)/2
]

2n0T/2Γ(n0/2)
. (28)

If Φ = IT×Tσ
2
e , an inverse Gamma prior for σ2e is used

p(σ2e) = IG(c0, d0) =
dc00

Γ(c0)
(σ2e)

−(c0+1) exp

(
−d0
σ2e

)
. (29)
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For k, we can use a uniform prior,

p(k) = U [a, b] =
1

b− a
. (30)

Some models may involve unknown parameters in Λ, for example, the A[j], j = 2, . . . , T − 1 in the latent
basis growth curve model. For those parameters, a multivariate normal prior can be used so that

λ = MN(λ0,Σλ) (31)

where λ is a vector formed by the unknown elements in Λ.
In these priors, β0, Σ0, m0, V0, n0, W0 (or c0 and d0), a, b, λ0, and Σλ are pre-determined hyper-

parameters. Prior distributions other than those illustrated here can also be used.

Posteriors

Given the above priors, the following conditional posterior distributions can be obtained. The condi-
tional posterior distribution for β is a multivariate normal distribution

p(β|Ψ,ηi, i = 1, . . . , N) = MNq(β1,Σ1) (32)

where

β1 = Σ1(Ψ
−1

N∑
i=1

ηi + Σ−10 β0) (33)

and
Σ1 = (NΨ−1 + Σ−10 )−1. (34)

The conditional posterior distribution for Ψ is an inverse Wishart distribution

p(Ψ|β,ηi, i = 1, . . . , N) = IW (m1, V1) (35)

where
m1 = m0 +N (36)

and

V1 = V0 +

N∑
i=1

(ηi − β)(ηi − β)′. (37)

The conditional posterior distribution for Φ is an inverse Wishart distribution

p(Φ|Λ, ηi,yi, wi, i = 1, . . . , N) = IW (n1,W1)

where
n1 = n0 +N (38)

and

W1 = W0 +

n∑
i=1

wi(yi −Ληi)(yi −Ληi)
′. (39)

If Φ = IT×Tσ
2
e , the conditional posterior distribution for σ2e is an inverse Gamma distribution

p(σ2e |Λ, ηi,yi, wi, i = 1, . . . , N) = IG(c1, d1) (40)

where
c1 = c0 +

NT

2
(41)
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and

d1 = d0 +
n∑
i=1

wi(yi −Ληi)
′(yi −Ληi)/2. (42)

The conditional posterior distribution for ηi is a multivariate normal distribution

p(ηi|Φ,Ψ,β,Λ, wi,yi) = MNq(µηi ,Σηi) (43)

where

µηi = Σηi

[
Ψ−1β + Λ′

(
Φ

wi

)−1
yi

]
(44)

and

Σηi =

[
Ψ−1 + Λ′

(
Φ

wi

)−1
Λ

]−1
. (45)

The conditional distribution for wi is a Gamma distribution

p(wi|k,Φ,Λ,yi,ηi) = G(
k + T

2
, k∗) (46)

where

k∗ =

{
2

k
+

1

2
tr
[
Φ−1(yi −Ληi)(yi −Ληi)

′]}−1 . (47)

The conditional posterior distribution of k does not have a standard form. The kernel for the condi-
tional posterior distribution of k is

p(k|wi, i = 1, . . . , N) ∝ U(a, b)(
N∏
i=1

wi)
k/2−1 exp

(
−
∑N

i=1wi
k/2

)[
Γ(k/2)−N

]
(k/2)−Nk/2. (48)

For certain models such as the robust latent basis growth curve model, the conditional posterior dis-
tribution for the unknown parameters λ in Λ is

p(λ|wi,ηi,Φ, i = 1, . . . , N) ∝ exp

[
−(λ− λ0)

′Σ−1λ (λ− λ0)−
N∑
i=1

wi
2

(yi −Ληi)
′Φ−1(yi −Ληi)

]
.

(49)
This distribution may not have a standard form for robust growth curve models.

Gibbs sampling algorithm

Given the above conditional posterior distributions, the following Gibbs sampling algorithm can be
implemented.

1. Start with initial values β(0),Ψ(0),Φ(0), k(0),η
(0)
i , w

(0)
i ,λ(0).

2. Assume at the jth iteration, we have β(j),Ψ(j),Φ(j), k(j),η
(j)
i , w

(j)
i λ(j).

3. At the (j + 1)th iteration,

(a) Sample β(j+1) from p(β|Ψ(j),η
(j)
i , i = 1, . . . , N);

(b) Sample Ψ(j+1) from p(Ψ|β(j+1),η
(j)
i , i = 1, . . . , N);
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(c) Sample Φ(j+1) from p(Φ|Λ(λ(j)), η
(j)
i ,yi, w

(j)
i , i = 1, . . . , n) or sample σ

2(j+1)
e from

p(σ2e |Λ(λ(j)), η
(j)
i ,yi, w

(j)
i , i = 1, . . . , n);

(d) Sample k(j+1) from p(k|w(j)
i , i = 1, . . . , n);

(e) Sample η
(j+1)
i , i = 1, . . . , N from p(ηi|Φ(j+1),Ψ(j+1),β(j+1),Λ(j)(λ(j)), w

(j)
i ,yi);

(f) Sample w(j+1)
i , i = 1, . . . , N from p(wi|k,(j+1) Φ(j+1),Λ(j)(λ(j)),yi,η

(j+1)
i )

(g) Sample λ(j+1) from p(λ|w(j+1)
i ,η

(j+1)
i ,Φ(j+1), i = 1, . . . , N).

In the algorithm, Λ(λ) denote the factor loading matrix after plugging the samples for the unknown param-
eters λ. The Gibbs sampling algorithm can be programmed using C++, R or other programming languages.
For parameters with standard forms, they can be sampled from directly. For parameters without standard
forms, the Metropolis-Hastings algorithm (Robert & Casella, 2004) can be applied in which the prior distri-
butions can be used as the proposal distributions.

Appendix B
Illustration of the software

We use the robust latent basis growth curve model as an example to illustrate the use of the software.
All figures used here are screens captured directly from an Internet browser. To use the software, go to
this web address – http://webstats.psychstat.org/semrgcm/ – in a web browser. On can select the model to
be used and then follow the on-screen direction as shown in this example. In the first step (Figure B1),
basic information related to the data and model can be provided such as the sample size, the number of
measurement occasions, the number of covariates in the model, and the missing data indicator. By default,
there is no covariate in the model and a missing datum is indicated by 99999. Also by default, the degrees
of freedom will be estimated. If one would like to fix the degrees of freedom, one can supply it as a non-zero
positive number. A data file can be specified by clicking on the Choose File button to set the path to
the data file on users’ local computer. Data should be in free format and organized according to the order of
occasion 1, occasion 2, ..., covariate 1, covariate 2, ... By clicking on the Next button, we move on to the
next screen.

In the second step (Figure B2), the prior for each model parameter can be specified. The hyper-
parameters for each prior distribution can be input. For example, the default prior for the intercept βL is a
normal distribution with mean 0 and variance 106, representing a non-informative prior. Informative priors
can also be supplied. If, based on previous research, one believes that βL has an average of 6 and its variation
is about 1, one can input 6 in the field of Mean and 1 in the field of Variance.

In the third step (Figure B3), the starting values for model parameters can be supplied. In the fourth
step (Figure B4), the control parameters for MCMC can be specified. The default Burn-in period, the
number of iterations to be discarded, is 1,000. This number should be increased for complex models or
analysis involving missing data. The Length of Markov Chain is the number of iterations used for
Bayesian parameter estimation. If Thinning is larger than 1, the iterations will only be saved every m
(=Thinning) iterations. DIC, EAIC and EBIC for the model will be calculated if the option DIC is
checked. Leaving DIC unchecked can marginally speed up the analysis. Furthermore, if one checks the
option Random effects, the random effects η will be estimated and the predicted individual growth
trajectories will be plotted.

The results for this analysis are given on the next screen and only the header of the output is presented
in Figure B5 for the sake of space. By clicking on the links in the header, one can go to each section of the
output. The results include the summary statistics as shown in Table 1, the spaghetti plot or the longitudinal
plot, the boxplot as shown in Figure 1, the Bayesian parameter estimates as in Table 3, the DIC, EAIC and
EBIC as in Table 10, and the history plot of Markov chain for each model parameter as in Figure 2. In
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Start over | Help | Citation | Terms of use

STEP 1. Please input data information below

Sample size:   160  
Number of occasions:   4  
Number of covariates:   0  
Missing data indicator:   99999  
Fix degrees of freedom at:   0  
Upload data nlsy.txtChoose File  
(less than 1Mb & only .txt and .dat allowed.): 

Next

Figure B1 Step 1: Basic data and model information

addition, the autocorrelation plot for each Markov chain is also provided. If the Random effects option
is checked, the output also includes the Bayesian estimates and credible interval of random effects and the
plot of the predicted growth trajectories.
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Robust latent basis growth curve model
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STEP 2. Specify priors for model parameters

Normal Prior  for Intercept  :   

Mean 0
Variance 1000000

Normal Prior  for Slope :   

Mean 0
Variance 1000000

Normal Prior  for basis coefficient :   

Mean 0
Variance 1000000

Normal Prior  for basis coefficient :   

Mean 0
Variance 1000000

Inverse Wishart Prior  for Covariance matrix  :   

Scale matrix 1 0 0 1
Degrees of freedom 2

Inverse Gamma Prior  for Error Variance (Scale parameter) :    

Shape 0.001
Scale 0.001

Uniform Piror  for Degrees of Freedom :   

Minimum 0
Maximum 100

Next
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Figure B2 Step 2: Priors
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Robust latent basis growth curve model
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STEP 3. Starting values for model parameters

Mean of Intercept :   4.65

Mean of Slope :   1.51

Basis coefficients :   0

Basis coefficients :   0

Covariance Matrix of Intercept and Slope :   1 0 0 1

Error Variance (Scale parameter) :   1

Degrees of Freedom :   5

Next
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Figure B3 Step 3: Starting values

Robust linear growth curve model
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STEP 4. Control MCMC

Burn-in:   1000

Length of Markov Chain:   10000

Thinning:   1

DIC?   

Random effects ?   

Next

η

Figure B4 Step 4: Controlling MCMC

Robust latent basis growth curve model
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Results

Summary statistics | Spaghetti plot | Boxplot | Bayesian estimates | History plot | Autocorrelation plot | Go to bottom

The program started to run at 11:17:50 on Dec 06, 2010 .

Return to top
Table 1. Summary Statistics.

Mean Variance Minimum Maximum Kurtosis Anscombe-Glynn test
(p-value)

Shapiro-Wilk normality test 
(p-value)

Time 1 4.69 0.81 2 6.5 2.85 0.8548 0.0013
Time 2 5.24 1.05 0.6 8.4 5.79 1e-04 1e-04
Time 3 5.78 1.2 2.6 8.9 3.53 0.1478 0.0035
Time 4 6.2 1.58 1.8 9 4.22 0.0131 2e-04

Return to top 

Longitudinal plot of data (for better resolution, click here) 

 

Return to top 

Boxplot of data (for better resolution, click here) 

Figure B5 Step 5: Output (only the header is presented here)


