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Abstract

The existing literature on statistical power analysis for mediation models often assumes

data normality and is based on a less powerful Sobel test instead of the more powerful

bootstrap test. This study proposes to estimate statistical power to detect mediation

effects based on the bootstrap method through Monte Carlo simulation. Non-normal data

with excessive skewness and kurtosis are allowed in the proposed method. A free R

package called bmem is developed to conduct the power analysis discussed in this study.

Four examples, including a simple mediation model, a multiple-mediator model with a

latent mediator, a multiple-group mediation model, and a longitudinal mediation model,

are provided to illustrate the proposed method.

Keywords: Power analysis, mediation models, non-normal data, bootstrapping, R

package bmem
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Monte Carlo Based Statistical Power Analysis for Mediation Models: Methods and

Software

Introduction

Mediation models are widely used in the social and behavioral sciences as

demonstrated in recent books by Hayes (2013) and MacKinnon (2008). Mediation models

are useful because they can be used to investigate the underlying mechanism related to

why an input variable influences an output variable. In order to avoid under-powered

research, statistical power analysis is always necessary before data collection. We are only

aware of a few studies that have discussed how to conduct power analysis for mediation

models. Most literature on power analysis for mediation models has focused on a simple

mediation model (Fritz & MacKinnon, 2007; C. Wang & Xue, 2012; Vittinghoff et al.,

2009; Beasley, 2012). Software is available in terms of R code (Kenny & Judd, 2013) and R

package (Qiu, 2013) for conducting power analysis for certain types of mediation models.

Thoemmes et al. (2010) proposed a general framework for power analysis for complex

mediation models using Monte Carlo simulation in Mplus (Muthén & Muthén, 1998-2011).

However, their method assumes that data are normally distributed and uses the Sobel test

although it can be extended to non-normal data analysis.

Practically collected data are often non-normal. For example, Micceri (1989) reported

that among 440 large-sample achievement and psychometric measures taken from journal

articles, research projects, and tests, all were significantly non-normally distributed.

Consequently, statistical tests developed for normal data often give inaccurate power

estimation in the presence of non-normal data (e.g., L. Wang & Zhang, 2011; Zu & Yuan,

2010; Zhang & Wang, 2013b). Mediation analysis adds extra complexity to power analysis.

For example, different methods are available for testing the mediation effect, and they can

have different power for the same mediation effect (e.g., Cheung, 2007; Fritz &

MacKinnon, 2007). Studies have shown that the bootstrap method achieves the highest

power among many methods developed for detecting mediation in the literature.
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This study extends Thoemmes et al. (2010) in several ways. First, it proposes a

general method to conduct power analysis for mediation models based on the bootstrap

method. The method is still based on Monte Carlo simulation but uses the bootstrap

method to test mediation effects. Second, the method allows the specification of

non-normal data in the Monte Carlo simulation and can thereby reflect more closely

practical data collection. Third, a free, open-source R package, bmem, is developed to ease

power analysis for mediation models using the proposed method.

In the following sections, we first present the proposed method for power analysis of

mediation models. Then, we illustrate the use of the R package bmem for conducting

power analysis. After that, we demonstrate the use of the proposed method through 4

examples including a simple mediation model, a multiple-mediator model with latent

variables, a multiple group mediation model, and a longitudinal mediation model.

Complete R code for the 4 examples is provided in the appendices.

Monte Carlo Based Statistical Power Analysis

In this section, we first present the proposed method. For better illustration, we focus

our discussion on a simple mediation model even though the method applies to more

complex models, as shown in our examples. Figure 1 displays the path diagram of the

simple mediation model. In the figure, x, m, and y represent the independent or input

variable, the mediation variable, and the dependent or outcome variable, respectively. In

this model, the total effect of x on y, c’+a*b, consists of the direct effect c’ and the

mediation effect θ=a*b, the multiplication of the direct effect of x on m and the direct effect

of m on y. The mediation effect is also called the indirect effect because it is the effect of x

on y indirectly through m.

Statistical power analysis for mediation can be viewed as concerning a test whether

the mediation effect (θ) is significantly different from 0. More specifically, we have the null
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and alternative hypothesis

H0 : θ = 0 vs. H1 : θ = θ1,

where θ1 represents a given effect size. By its definition, the statistical power (π) is

π = Pr(reject H0|H1). (1)

In addition to the use of null hypothesis testing, the power can be calculated using the

confidence intervals. This is based on the equivalence of confidence intervals and

hypothesis testing (e.g., Hoenig & Heisey, 2001; Meehl, 1997). That is, if a 1-α confidence

interval does not include the null hypothesis value, one can infer a statistically significant

result at the significant level α (e.g., Daly, 1991). More specifically, let [l, u] denote the

confidence interval of the mediation effect θ. The power is then

π = Pr(0 /∈ [l, u]|H1). (2)

In practice, the power π can be difficult to calculate analytically especially for complex

mediation models. However, it can be estimated using the relative frequency of rejecting

the null hypothesis in Monte Carlo simulation following Algorithm 1. The algorithm has

been widely applied in the literature of statistical power analysis for both mediation

analysis and other analysis (e.g., Cheung, 2007; Fritz & MacKinnon, 2007; Fritz et al.,

2012; Hayes & Scharkow, 2013; MacKinnon et al., 2004; Muthén & Muthén, 2002;

Thoemmes et al., 2010; Zhang & Wang, 2009, 2013b).

A critical component of such a Monte Carlo algorithm is the choice of the method for

constructing the confidence interval of the mediation effect. In this study, we consider three

types of confidence intervals: the normal confidence interval, the robust confidence interval,

and the bootstrap confidence interval although we recommend the use of the bootstrap

confidence interval.
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Algorithm 1 Monte Carlo simulation algorithm for statistical power
1. Form a mediation model based on the hypothesized theory and set up the population

parameters for the mediation model. The parameter values can be decided from previous

studies in the literature or a pilot study.

2. Generate a data set with sample size n based on the model and its population parameter

values.

3. Test the significance of a mediation effect by forming a confidence interval using the

generated data.

4. Repeated Steps 2 and 3 for R times where R is the number of Monte Carlo replications.

5. Suppose among the R replications, the mediation effect is significant for r times. Then

the power for detecting the mediation effect given the sample size n is r/R.

Normal Confidence Interval

In mediation analysis, model parameters and their covariance can be estimated using

the maximum likelihood method. Under the normal data assumption, the estimated model

parameters follow a multivariate normal distribution asymptotically. For example, for the

simple mediation model, â and b̂, estimates of a and b, have a bivariate normal

distribution with the covariance matrix

 σ̂2
a σ̂ab

σ̂ab σ̂2
b

 where σ̂2
a, σ̂2

b , and σ̂ab are the

estimated variances and covariance of â and b̂. Using the delta method, θ̂ = âb̂ is normally

distributed with mean θ = ab and variance b̂2σ̂2
a + 2âb̂σ̂ab + â2σ̂2

b (p.298, Sobel, 1982). The

1− α confidence interval for ab can be constructed as

[âb̂+ Φ−1(α/2)× ŝe(âb̂), âb̂+ Φ−1(1− α/2)× ŝe(âb̂)], (3)

where Φ is the standard normal cumulative distribution function and therefore Φ−1(α)

gives the 100αth percentile of the standard normal distribution. For example, for the 95%

confidence interval, Φ−1(α/2) = Φ−1(.05/2) = Φ−1(.025) ≈ −1.96 and

Φ−1(1− α/2) = Φ−1(.975) ≈ 1.96. ŝe(âb̂) =
√
b̂2σ̂2

a + 2âb̂σ̂ab + â2σ̂2
b is the standard error of
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âb̂. We refer to this interval as the normal confidence interval. Note a power analysis based

on the normal confidence interval is the same as the use of the Sobel test.

Robust Confidence Interval

When data are not normally distributed, the standard error estimates of the

parameter estimates of the mediation models are not consistent. Therefore, the confidence

interval in Equation (3) is problematic. However, if the fourth moments (or kurtosis) of the

non-normal data still exist, the robust Sandwich-type standard errors are consistent and

can be used (Zu & Yuan, 2010). Therefore, replacing the normal standard error with the

Sandwich-type standard error in Equation (3), we obtain a robust confidence interval for

the mediation effect.

Bootstrap Confidence Interval

Both the normal and robust confidence intervals are based on asymptotic theory and

they might not perform well in finite sample experiments (e.g., MacKinnon et al., 2004; Zu

& Yuan, 2010). In the literature, confidence intervals constructed using the bootstrap

method have been shown to perform better under many studied conditions (e.g., Cheung,

2007; Fritz & MacKinnon, 2007; Fritz et al., 2012; Hayes & Scharkow, 2013; MacKinnon et

al., 2004; Preacher & Hayes, 2004; Shrout & Bolger, 2002). Algorithm 2 can be followed to

construct a bootstrap confidence interval.

Different bootstrap confidence intervals have been used for the bootstrap method in

the literature of mediation analysis (e.g., Cheung, 2007; Fritz & MacKinnon, 2007; Fritz et

al., 2012; Hayes & Scharkow, 2013; MacKinnon et al., 2004). Let θ denote a population

mediation effect, θ̂ denote the estimate of θ from the original data, and θ̂b, b = 1, . . . , B

denote its estimate for the bth bootstrap sample. A 100(1− α)% bootstrap confidence

interval is formed in the following ways. First, the percentile bootstrap confidence interval

can be constructed by [θ̂b(α/2), θ̂b(1− α/2)] for a parameter with θ̂b(α) denoting the

100αth percentile of the B bootstrap estimates. Second, the bias-corrected bootstrap
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Algorithm 2 Bootstrap confidence interval algorithm
1. Using the original data set (Sample size = n) as a population, draw a bootstrap sample

of n persons randomly with replacement.

2. With the bootstrap sample, estimate model parameters and compute estimated mediation

effects.

3. Repeat Steps 1 and 2 for a total of B times. B is the number of bootstrap samples.

4. The bootstrap confidence intervals of model parameters and mediation effects are con-

structed.

confidence interval can be constructed as [θ̂b(α̃l), θ̂b(α̃u)] where α̃l and α̃u are used to get

the quantiles and are calculated by

α̃l = Φ[2z0 + Φ−1(α/2)] (4)

and

α̃u = Φ[2z0 + Φ−1(1− α/2)] (5)

with

z0 = Φ−1

number of times that θ̂b < θ̂

B

 . (6)

Remarks

Choice of Confidence Intervals. Simulation studies have been conducted to

evaluate the normal, robust, and bootstrap confidence intervals (e.g., Cheung, 2007; Fritz

et al., 2012; Hayes & Scharkow, 2013; MacKinnon et al., 2004; Zu & Yuan, 2010). Overall,

the bootstrap confidence intervals, including the percentile and the bias-corrected ones,

perform better than the non-bootstrap ones. It is found that the percentile bootstrap

confidence interval has greater power than the normal one and, at the same time,

maintains Type I error near its nominal level. The bias-corrected bootstrap confidence

interval has even greater power than the percentile bootstrap confidence interval but at the

cost of more liberal Type I error. In a recent study, Hayes & Scharkow (2013)
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recommended that if power is at the forefront of concerns, the bias-corrected bootstrap

confidence interval can be used and, in general, one can use the percentile bootstrap

confidence interval as a good compromise test. In this study, by default, we adopt the

percentile bootstrap confidence interval in our analysis. Our software allows the use of

normal, robust, percentile bootstrap, and bias-corrected bootstrap confidence intervals.

Non-normal Data in Power Analysis. Typically in the Monte Carlo based

power analysis, data are generated from a multivariate normal distribution assuming that

data collected in the future study will be normally distributed (e.g., Zhang & Wang,

2009). In order to deal with non-normal data, one should allow for a power analysis based

on non-normal data. In this study, continuous non-normal data with target skewness and

kurtosis can be used. Specifically, the method developed by Vale & Maurelli (1983) is used

to generate non-normal data with the same mean and variance as the normal data but with

target skewness and kurtosis provided by a user. If the literature shows, or a researcher has

reason to believe, that non-normality is a concern after data collection, power analysis

should be conducted with simulated non-normal data. For non-normal data with excessive

skewness and kurtosis, power based on the robust and bootstrap confidence intervals

should be trusted more than the normal confidence interval. For studies with small sample

size, the bootstrap method is expected to perform best.

Controlling Type I Error. The literature on mediation analysis has shown that

the type I error for mediation tests is generally not well controlled (e.g., Fritz et al., 2012;

MacKinnon et al., 2004; Zhang & Wang, 2013b). Through simulation, MacKinnon et al.

(2004) showed that the normal method had too conservative empirical type I error and, on

average, the bias-corrected bootstrap method had an acceptable empirical type I error.

Recent studies further found that the bias-corrected bootstrap method had an inflated type

I error rate when one of the direct effects, a or b, was not zero (e.g., Fritz et al., 2012;

Hayes & Scharkow, 2013). The percentile bootstrap method, on the other hand, was found

to have better controlled type I error. Therefore, if the power is calculated based on the
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percentile bootstrap confidence interval, the type I error should not be a big concern.

If controlling type I error is the foremost concern in power analysis, we recommend

the following strategy. Our Monte Carlo method can be conducted under the null

hypothesis where the null values can be used as the population parameters. In this case,

power becomes type I error. Suppose a researcher wants to control type I error at 0.05

level. The researcher can always starts with a significance level at 0.05. Then, the

empirical type I error can be obtained. If the empirical type I error rate is smaller than .05,

the researcher can increase the significance level. Otherwise, the researcher can decrease

the significance level. By trial and error, the researcher can decide on a significance level to

control the type I error rate at the desired value. Then, in power analysis, the significance

level can be used to construct confidence intervals to test mediation effects.

Relevant Statistics from the Monte Carlo Method. Using the Monte Carlo

method, the statistical power is estimated by r/R. The standard error of the power can be

estimated by
√
r(1− r)/R3. Note that with the increase of R, the power estimate becomes

more accurate. In practice, we recommend R ≥ 1000 because in the literature, 1000

replications are often used in evaluating power (e.g., Cheung, 2007; Thoemmes et al.,

2010; Zhang & Wang, 2009).

In addition to power and its standard error, other statistics can be calculated. An

important one is the empirical coverage probability. The empirical coverage probability is

the rate that the constructed confidence interval covers the population value. For a

well-performed confidence interval, the empirical coverage probability should be close to the

confidence level 1− α. For example, Hayes & Scharkow (2013) showed that the percentile

bootstrap confidence interval has better coverage than the bias-corrected one. With the R

sets of parameter estimates and their standard errors, one can also calculate the mean and

standard deviation of the parameter estimates and the mean of the standard errors.
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R Package bmem

The proposed method in the above section is implemented in the free, open-source R

package bmem (Zhang & Wang, 2013a). The package bmem uses the R package lavaan

(Rosseel, 2012) for model estimation. The package can conduct power analysis based on

the normal, robust, and bootstrap confidence intervals. We now illustrate the use of the

package through a simple mediation model shown in Figure 2. The values in the figure are

population parameters that can be decided from a pilot study or previous literature. In

this example, we choose the parameter values to approximate a medium mediation effect.

Some of the values are labeled using a, b, and cp. For demonstration, suppose we are

interested in the power of the mediation effect ab=a*b and the total effect abc=a*b+cp.

To use bmem, one needs to specify the mediation model and the mediation effect. The

package uses the lavaan model specification method but with some specific requirements.

For example, for the simple mediation model, it is specified as below:

demo = "

y ~ cp*x + start (0)*x + b*m + start (.39)*m

m ~ a*x+start (.39)*x

x ~~ start (1)*x

m ~~ start (1)*m

y ~~ start (1)*y

"

First, the name of the model is demo in R. Everything about the model is given in a pair of

quotation marks. Each path in the model is described using a line of statement. For

example, m ~ a*x + start(.39)*x means that m regresses on x with the coefficient 0.39

as in start(0.39). Because the coefficient has a label a, it is also specified in the equation.

The statement x ~~ start(1)*x means that the variance for x is 1. More generally, the

regression relationships are specified using ~ and variance and covariance are specified
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using ~~. More about model specification can be found in Rosseel (2012). The use of

bmem does not requires knowledge of R beyond what is discussed in this paper. However,

users who are interested in learning R are directed to the webpage at

http://www.r-project.org/doc/bib/R-books.html for a list of useful references.

With the model, we also need to tell the package the mediation effect to conduct

power analysis on. In this example, the mediation effect ab and the total effect abc are of

interest to us. They can be specified as

mediation = "

ab := a*b

abc:= a*b + cp

"

The notation := means to calculate the indirect effect ab as the product of parameter a

and b, where the labels on the right hand of “:=” should be consistent with those used in

the model statement demo. Similarly, the total effect is calculated.

Only the labels for the parameters that will appear in the calculation of the

mediation effect are necessary to use in the model specification part. For example, for the

variance parameters, no labels are used. By default, the variance parameters will be set at

1. Therefore, in this example, the specifications of the three variance parameters are not

required.

The package bmem conducts power analysis based on the percentile bootstrap method

through the function power.boot. The code below presents an example to calculate power

for the model in Figure 2 with a sample size 100.

power.result = power.boot(model=demo , indirect=mediation , nobs

=100, nrep =1000, nboot =2000, parallel =" multicore", skewness=

c(0, 0, 1.3), kurtosis=c(0, 0, 10), ovnames=c("x", "m", "y")

)
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The function power.boot takes many arguments but only the model one is required. A

model is provided using the argument model, for this example, model=demo. If a mediation

effect is of interest, it should also be provided as in this example indirect=mediation. By

default, the power is calculated for a sample size of 100, but one can change it by providing

a different number to nobs. One can specify the number of Monte Carlo simulation

replications in the calculation of power using option nrep= with a default 1000 and also the

number of bootstrap using nboot= with a default 1000. To take the advantage of

multi-core processors of modern computers, the package allows parallel computing by

setting parallel=’snow’ which uses the R package snowfall (Knaus, 2013) for automatic

parallelization. By default, all cores available on a computer are used to speed up

calculation. If one suspects the data will be non-normal , the skewness and kurtosis for the

observed variables can be provided. When specifying non-normal data, the observed

variable names (ovnames) should also be provided to match the order of the skewness and

kurtosis statistics.

The results of the power analysis can be summarized into a table using the function

summary(power.result). The results table (Output 1) shows several columns. First, the

column True lists the population parameter values. Second, the column Estimate presents

the average parameter estimates across all replications. Third, the column MSE is the

average bootstrap standard error and the column SD is the standard deviation of the

parameter estimates across all replications. Fourth, the column Power gives the power to

detect whether a parameter is significant and the column Power.se provides the standard

error of the estimated statistical power. Finally, the column Coverage presents the

empirical coverage probability of the bias-corrected bootstrap confidence interval. The

power for the mediation effect is listed at the end of the table entitled “Indirect/Mediation

effects”. The power to detect the mediation effect with a sample size 100 is about 0.935

using the percentile bootstrap confidence interval for the current example. During the

phase of sample size planning, if a researcher targets a power of 0.8, he/she can reduce the
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current sample size for another calculation.

Output 1. Output of bmem
True Estimate MSE SD Power Power .se Coverage

Regressions :

math ~

ME (cp) 0.000 0.001 0.107 0.111 0.070 0.008 0.930

HE (b) 0.390 0.395 0.109 0.119 0.971 0.005 0.928

HE ~

ME (a) 0.390 0.394 0.101 0.103 0.966 0.006 0.938

Variances :

math 1.000 0.975 0.262 0.351 1.000 0.000 0.791

HE 1.000 0.982 0.135 0.140 1.000 0.000 0.915

Indirect / Mediation effects :

ab 0.152 0.156 0.061 0.064 0.935 0.008 0.933

abc 0.152 0.158 0.108 0.111 0.346 0.015 0.927

In addition to the power for the mediation effect and the total effect, the results also

include power for all parameters in the model. For variance parameters, since they are

always larger than 0, its power is obtained based on the bootstrap standard error instead of

the percentile confidence interval. Furthermore, if one adds the argument ci=”BC” in the

power.boot function, the power based on the bias-corrected confidence interval can be

obtained. Although the purpose of this study focuses on the power using the bootstrap

method, the package bmem also provides a function power.basic to conduct power analysis

for mediation models using the normal and robust confidence intervals.

In estimating the power for the mediation effect and the total effect, we assume that

the type I error is well controlled. If a researcher is concerned about the type I error,

he/she can investigate it using bmem. For example, the code below specifies a possible

model under the null hypothesis that assumes a = b = 0. Replacing the model demo using

demo.alpha, we get the empirical type I error 0.003 for the mediation effect and 0.064 for

the total effect. Furthermore, through trial-and-error, one can find that at the significance

level 0.3, the empirical standard error is approximately 0.05 for a = b = 0 and at the same
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time, the power for a = b = 0.39 boosts to 0.996. However, Fritz et al. (2012) showed that

the type I error is related to the magnitude of a and b under null (also see Example 1).

Therefore, a more serious investigation would evaluate the type I error according to the

combination of different values of a and b.

demo.alpha = "

y ~ cp*x + start (0)*x + b*m + start (0)*m

m ~ a*x+start (0)*x

"

Examples

In this section, we present four examples to demonstrate how the proposed method

can be applied in different scenarios. The first example is about a simple mediation

analysis. The second example is on a multiple-mediator mediation model with a latent

mediator. The third example involves mediation analysis in a multiple group analysis

setting. The fourth examples shows the power analysis for longitudinal mediation models.

Example 1. Simple Mediation Analysis

In this example, the model with its population parameter values in Figure 2 is used

to explore whether the relationship between mothers’ education (ME) and children’s

mathematical achievement (math) is mediated by home environment (HE; Zhang & Wang,

2013b). Through this example, we demonstrate the difference in power for normal and

non-normal data. In generating the non-normal data, the skewness is set at -0.3, -0.7, and

1.3 and the kurtosis is set at 1.5, 0, and 5 for ME, HE, and math, respectively. The

skewness and kurtosis statistics are determined according to real data used in Zhang and

Wang (2013). The sample size of 50 and 100 is investigated. The focus is the mediation

effect ab. Complete R code for the analysis can be found in Appendix A.

The statistical power for detecting the mediation effect at the significance level
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α = 0.05 in this example is given in Table 1. Like a typical power analysis, power increased

with sample size regardless of the normality of the data. It should be noted that

non-normality may not necessarily reduce the power to detect significance of mediation

effect. In this example, when data are non-normal, the power actually increased. The

results are consistent with the previous literature on non-normal data with excessive

kurtosis (e.g., Yuan et al., 2005).

Type I error is also investigated in this example. Because ab = 0 has different

indications on the value of a and b, we evaluate the influence of different combinations of

them. The results shows that when the magnitude of a or b is small, e.g., < 0.14, the

empirical type I error is smaller than 0.05. On the other hand, when either a or b is large,

the method based on the percentile bootstrap confidence interval tends to reject the null

hypothesis more. The results here are consistent with Fritz et al. (2012).

Example 2. Mediation Analysis with a Latent Mediator (Power Curve)

A power curve is useful to graphically display how power changes with sample size

(e.g., Zhang & Wang, 2009). Using the model shown in Figure 3, we show how to generate

a power curve. The substantive idea of the model in Figure 3 is that the relationship

between age and eduction and the performance on the everyday problem solving test (ept)

is mediated by the memory ability measured by the Hopkins Verbal Learning Test (hvltt)

and the reasoning ability measured by three reasoning tests including word series (ws),

letter sets (lt), and letter series (ls) tests (see Zhang & Wang, 2013b). The population

model parameters are also displayed in the figure. The R code in Appendix B generates the

power curve in Figure 4. The power curve displays the power in detecting the effect of age

and education on ept that is mediated by hvltt (a*b+c*b) for sample size from 100 to 1900

with an interval of 200. The plot shows that to get a power 0.8, a sample size about 1,500

is needed. Note that a power curve can be used to obtain power for a given sample size

through interpolation, although the results might not be as accurate.
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Example 3. Multiple Group Mediation Analysis (Moderated Mediation)

Thoemmes et al. (2010) considered a multiple group mediation model shown in

Figure 5. Different from the simple mediation model in Figure 2, the mediator m is

measured as a latent variable by three observed variables, m1, m2, and m3. Furthermore,

two groups are considered with varying mediation effects. Specifically, the mediation effect

for the first group is a1*b1 = 0.26 and for the second group is a2*b2 = 0.10. This

implies a moderated mediation because the mediation effects are different for the two

groups. The moderated mediation can be evaluated using a1*b1 - a2*b2. The sample size

for the first group is 400 and for the second group 200. The R code for this analysis is

given in Appendix C.

Power for this example is given in Table 2. Comparing the power from Thommes et

al. (2010), the power for med2 = a2*b2 increased while the power for diffmed = a1*b1 -

a2*b2 decreased. The following reasons might explain the difference. First, x is binary in

Thommes et al. but is continuous in the current study. Second, a close look at the

bootstrap distributions revealed that the bootstrap distribution of med2 was right-skewed

and the bootstrap distribution of diffmed was left-skewed. Thommes et al. (2010) used

the Sobel test that assumed the distribution of the indirect effects is normal while the

bootstrap method does not require such an assumption.

Example 4. A Longitudinal Mediation Model

Maxwell & Cole (2007) has recommended the use of longitudinal mediation models in

mediation analysis because of the involvement of causal process in mediation. Figure 6 is a

longitudinal mediation model derived from Figure 3 of Maxwell and Cole (2007) with

population parameter values calculated from Table 2 of Maxwell and Cole. In this

example, each variable in the mediation model is measured three times repeatedly. The

idea of longitudinal mediation is that the input variable at time 1 influences the mediator

at time 2 which in turn affects the outcome variable at time 3. The mediation effect is then
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measured by a*b as in the cross-sectional mediation models. The power for the mediation

effect a*b is calculated with the code in Appendix 4. The power is 0.860 when the

bootstrap method is utilized for a sample size of 50.

Discussion

In this study, we proposed to conduct power analysis for mediation models based on

the bootstrap method. Specifically, the significance of the mediation effect is evaluated

using the percentile bootstrap confidence interval. The proposed method is implemented in

the free, open-source R package bmem. The use of the method is illustrated through four

examples that cover a large variety of mediation models. The bootstrap method is

recommended to use especially when data are not normally distributed, e.g., with excessive

skewness and kurtosis.

The proposed method is computationally intensive because of the involvement of the

Monte Carlo simulation and bootstrap. For example, for a power analysis with 1000

replications of Monte Carlo simulation and 1000 times of bootstrap, a total of one million

models have to be estimated and evaluated. In order to take advantage of modern

hardware such as multi-core processors, the package bmem implements automatic

parallelization algorithms. Figure 7 displays the computing time along with the number of

cores used on our desktop. Clearly, the computing time can be significantly reduced when

multiple cores are used. Furthermore, the parallel method is very efficient because the

computing time reduces almost linearly with the increase of the number of cores.

The bootstrap method requires about B times computing time of the normal or

robust method, where B is the number of bootstraps. Furthermore, with the same sample

size, the bootstrap method often has greater power. Therefore, in practice, one can first

calculate power using the normal method to determine a rough sample size. Then, the

bootstrap method can be carried out with a smaller sample size than the normal method.

In this way, one can save a significant amount of computing time.
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Although we have focused our discussion on the mediation models, the method and

software in this study can be used to conduct power analysis for structural equation models

as well. The calculation of the power using the Monte Carlo method needs the estimation

of a mediation model. Therefore, after data collection, the same model can be estimated in

R without the need of additional statistical software.

In the future, we will improve our method and software in the following ways. First,

a better model estimation algorithm will be utilized to save computing time. For example,

von Oertzen & Brick (2013) developed an efficient method that can significantly reduce the

time of power analysis proposed in this study. Second, missing data are always a problem

in practical power analysis (Zhang & Wang, 2009). The current method assumes the data

collected will be complete. In the future, we will incorporate missing data in power

calculation. Third, the algorithm for generating non-normal data will be improved. One

limitation of the method developed by Vale & Maurelli (1983) is that it cannot generate

non-normal data with all possible combinations of skewness and kurtosis. Fourth, the

current study focuses on one type of non-normal data, namely, continuous data with

excessive skewness and kurtosis. In the future, other types of non-normal data, for

example, categorical data, count data, and survival data will be investigated.
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Appendix A. R Code for Example 1

library(bmem)

ex1model <-’
math ~ c*ME+start (0)*ME + b*HE+start (.39)*HE
HE ~ a*ME+start (.39)*ME
’

indirect <-’ab:=a*b’

boot.normal <-power.boot(ex1model , indirect , 50, nrep =2000,
nboot =2000, parallel=’multicore ’)

summary(boot.normal)

boot.non.normal <-power.boot(ex1model , indirect , 100, nrep =2000,
nboot =2000, parallel=’multicore ’, skewness=c(-.3, -.7, 1.3)

, kurtosis=c(1.5, 0, 5), ovnames=c(’ME ’, ’HE ’, ’math ’))
summary(boot.non.normal)

Appendix B. R Code for Example 2

library(bmem)

ex2model <-’
ept ~ start (.4)*hvltt + b*hvltt + start (0)*age + start (0)*edu

+ start (2)*R
hvltt ~ start ( -.35)*age + a*age + c*edu + start (.5)*edu
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R ~ start ( -.06)*age + start (.2)*edu
R =~ 1*ws + start (.8)*ls + start (.5)*lt
age ~~ start (30)*age
edu ~~ start (8)*edu
age ~~ start (-2.8)*edu
hvltt ~~ start (23)*hvltt
R ~~ start (14)*R
ws ~~ start (3)*ws
ls ~~ start (3)*ls
lt ~~ start (3)*lt
ept ~~ start (3)*ept

’

indirect <-’ind1 := a*b + c*b’

nobs <- seq(100, 2000, by =200)

power.curve(model=ex2model , indirect=indirect , nobs=nobs , type
=’boot ’, parallel=’multicore ’)

Appendix C. R Code for Example 3

library(bmem)

ex3model <-"
y ~ start(c(.283, .283))*x + c(c1,c2)*x + start(c(.36, .14))*m

+c(b1,b2)*m
m ~ start(c(.721, .721))*x + c(a1,a2)*x
m =~ c(1,1)*m1 + start(c(.8 ,.8))*m2 + start(c(.8 ,.8))*m3
x ~~ start(c(.25, .25))*x
y ~~ start(c(.81, .95))*y
m ~~ start(c(.87, .87))*m
m1 ~~ start(c(.36, .36))*m1
m2 ~~ start(c(.36, .36))*m2
m3 ~~ start(c(.36, .36))*m3
"

indirect <-’
med1 := a1*b1
med2 := a2*b2
diffmed := a1*b1 - a2*b2
’

bootstrap <-power.boot(ex3model , indirect , nobs=c(400 ,200), nrep
=2000, nboot =1000 , parallel=’multicore ’)
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summary(bootstrap)

Appendix D. R Code for Example 4

ex4model <-’
x2 ~ start (.9)*x1 + x*x1
x3 ~ start (.9)*x2 + x*x2
m2 ~ start (.3)*x1 + a*x1 + start (.3)*m1 + m*m1
m3 ~ start (.3)*x2 + a*x2 + start (.3)*m2 + m*m2
y2 ~ start (.3)*m1 + b*m1 + start (.7)*y1 + y*y1
y3 ~ start (.3)*m2 + b*m2 + start (.7)*y2 + y*y2 + start (0)*x1 +

c*x1
x1 ~~ start (.37)*m1
x1 ~~ start (.27)*y1
y1 ~~ start (.2278)*m1
x2 ~~ start (.19)*x2
x3 ~~ start (.19)*x3
m2 ~~ start (.7534)*m2
m3 ~~ start (.7534)*m3
y2 ~~ start (.3243)*y2
y3 ~~ start (.3243)*y3
’

indirect <-’ab:=a*b’

bootstrap <-power.boot(ex4model , indirect , nobs=50, nrep =1000 ,
nboot =1000, parallel=’multicore ’, ncore =60)

summary(bootstrap)
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Table 1

Power (a = b = .39) and Type I error (ab = 0) in detecting the mediation effect in Example

1. The empirical type I error is different for different combination of a and b.

N=50 N=100

a b Normal Data Non-normal data Normal Data Non-normal data

0.39 0.39 0.509 0.574 0.928 0.954

0 0 0.001 0.002 0 0.003

0 0.14 0.004 0.01 0.011 0.016

0 0.39 0.036 0.05 0.061 0.055

0 0.59 0.07 0.074 0.063 0.062

0.14 0 0.004 0.007 0.01 0.01

0.39 0 0.037 0.054 0.059 0.062

0.59 0 0.061 0.073 0.06 0.056
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Table 2

Power from Thoemmes et al. (2010) and current analysis

med1=a1*b1 med2=a2*b2 diffmed=a1*b1 - a2*b2

Thoemmes et al. 2010 0.99 0.37 0.53

Percentile bootstrap 1 0.411 0.475
Note. med1 and med2 are mediation effects of the first and second group, respectively.

diffmed is the difference in the mediation effects of the two groups.
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WEBSEM: STRUCTURAL EQUATION MODELING ONLINE

     

    

    

Software: bmem  

Data File: 

meddata.txt   

Weight: 

.1

Grouping Variable: 

Constraints: 

ab==a*b
abc == a*b + c

 

Control: 

bootstrap=100

About  

Welcome Johnny Zhang  »   Current Project | New Project | List All Projects | Apps | Wiki | Messages | Ask SEM

 

WebSEM   Admin   »   Login |Logout | Profile

Figure 1 . Path diagram of a simple mediation model.
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WEBSEM: STRUCTURAL EQUATION MODELING ONLINE

     

    

    

Software: rsem  

Data File: 

active.full.txt   

Weight: 

Grouping Variable: 

Constraints: 

 

Control: 

About  

Welcome Johnny Zhang  »   Current Project | New Project | List All Projects | Apps | Wiki | Messages | Ask SEM

 

WebSEM   Admin   »   Login |Logout | Profile

Figure 2 . An example mediation model with population parameters
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Control: 

About  
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Figure 3 . A multiple-mediator mediation model with population parameter values used in

Example 2.
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Figure 4 . Power curve for testing the mediation effect in Example 2. To get a power 0.8, a

sample size around 1500 is needed based on the power curve.
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Figure 5 . The path diagram of a multiple group mediation model with population

parameter values.
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Figure 6 . The path diagram for a longitudinal mediation model with population parameter

values.
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Figure 7 . Computing time along with the number of CPU cores utilized for the mediation

model in Example 1.


